Важнейшие достижения 19 века. Научные открытия XIX века. Связь науки с практикой

XIX век стал для эволюции техники революционным. Так именно в этот период были изобретены механизмы, кардинально изменившие весь ход развития человечества. Большинство этих технологий, хотя были и заметно улучшены, используются и в наше время.
Какие же технические изобретения XIX изменили весь ход развития человечества? Перед вами сейчас будет список важных технических новшеств, совершивших техническую революцию. Этот список не будет являться рейтингов, все технические изобретения имеют равную степень важности для мировой технической революции.

Технические изобретения XIX.
1. Изобретение стетоскопа. В 1816 году французским доктором Рене Лаэннеком был изобретен первый стетоскоп – медицинский прибор для выслушивания шумов внутренних органов (легких, сердца, бронхов, кишечника). Благодаря ему доктора могут, например, услышать хрипы в легких, диагностировав тем самым ряд опасных болезней. Этот прибор потерпел существенных изменений, однако механизм остался прежним и является важным диагностическим средством и сегодня.
2. Изобретение зажигалки и спичек. В 1823 году немецким химиком Иоганном Деберейнером была изобретена первая зажигалка – эффективное средство для получения огня. Теперь огонь можно было зажечь в любых условиях, что сыграло немаловажную роль в жизни людей, в том числе и военных. А в 1827 году изобретателем Джоном Уолкером были изобретены первые спички, основаны на механизме трения.
3. Изобретение портландцемента. В 1824 году Уильямом Аспдином была разработана разновидность цемента, который используется в наши дни практически во всех странах мира.
4. Двигатель внутреннего сгорания. В 1824 году Сэмюелем Брауном был изобретен первый двигатель, который имел внутреннюю систему сгорания. Это важное изобретение дало начало развитию автомобилестроению, кораблестроению и многим другим механизмам, работающих с помощью двигателя. В последствие эволюции это изобретение потерпело множество изменений, но система работы осталась прежней.
5. Фотография. В 1826 году французским изобретателем Жозефом Ньепсом была изобретена первая фотография, основана на способе закрепления изображения. Это изобретение дало важный толчок к дальнейшему развитию фотографии.
6 . Электрогенератор. Первый электрический электрогенератор был изобретен в 1831 году Майклом Фарадеем. Это устройство способно преобразовывать все виды энергии в электрическую энергию.
7. Азбука Морзе. В 1838 году американским изобретателем Сэмюэлем Морзе был создан знаменитый способ кодирования под названием Азбука Морзе. До сих пор этот способ используется в морском военном искусстве и в мореплаванье в целом.
8 . Анестезия. В 1842 году было совершенно одно из самых важнейших медицинских открытий – изобретение анестезии. Ее изобретателем считается доктор Кроуфорд Лонг. Это позволило хирургам проводить операции на пациенте без сознания, что существенно повысило выживаемость, так как до этого оперировали пациентов в полном сознании, от чего те умирали от болевого шока.
9. Шприц. В 1853 году было совершенно еще одно важное медицинское открытие – изобретение привычного для нас шприца. Его изобретателем является французский доктор Шарль-Габриэль Правас.
10. Нефтегазовая буровая установка. Первая нефтегазовая буровая установка была изобретена в 1859 году Эдвином Дрэйком. Это изобретение положило начало добычи нефти и природного газа, что привело к революции в топливной промышленности.
11. Орудие Гатлинга. В 1862 году американским известным в то время изобретателем Ричардом Гатлингом был создан первый в мире пулемет – орудие Гатлинга. Изобретение пулемета стало революцией в военном ремесле и в последующие годы, это оружие становиться одним из самых смертоносных на поле боя.
12. Динамит. В 1866 году Альфредом Нобелем был изобретен знаменитый динамит. Эта смесь полностью изменила основы горной промышленности, а также заложила основу современной взрывчатке.
13 . Джинсы. В 1873 году американским промышленником Левеем Страуссом были изобретены первые джинсы – брюки из невероятно прочной ткани, которые стали одним из основных видов одежды уже более полутора века.
14 . Автомобиль. Первый в мире автомобиль был запатентован Джорджем Селденом в 1879 году.
15. Бензиновый двигатель внутреннего сгорания. В 1886 году было сделано одно из величайших открытий человечества – бензиновый двигатель внутреннего сгорания. Это устройство используется по всему миру в невероятных масштабах.
16. Электросварка. В 1888 году российским инженером была изобретена известная и используемая во всем мире электросварка, позволяющая в короткий срок соединять различные железные детали.
17. Радиопередатчик. В 1893 году известным изобретателем Никола Тесла был изобретен первый радиопередатчик.
18. Кинематограф. В 1895 году братьями Люмьер был снят первый мир кинофильм – знаменитая лента с прибытием поезда на станцию.
19. Рентгеновское излучение. Еще один важный прорыв в медицине был сделан в 1895 году, его совершил немецкий физик Вильгельм Рентген. Он изобрел аппарат для сьемки с помощью рентгеновского излучения. Это устройство, например, может обнаружить перелом человеческой кости.
20. Газовая турбина. В 1899 году изобретателем Чарльзом Кертисом был изобретен механизм, вернее двигатель внутреннего сгорания непрерывного действия. Такие двигатели были значительно мощнее поршневых двигателей, но также и более дорогими. Активно используются и в современном мире.
21. Магнитная запись звука или же магнитофон. В 1899 году датским инженером Вальдемаром Поульсеном был сделан первый магнитофон – устройство для записи и воспроизведения звука с помощью магнитной ленты.
Перед вами был список одних из самых важных технических изобретений XIX. Конечно, в этот период было совершенно большое количество и других изобретений, кроме того, они являются не менее важными, однако эти изобретения заслуживают особого внимания.

Девятнадцатый век стал эпохой прорывов человечества в науке. Этот век создал основу для научных прорывов века двадцатого.
Прорывы девятнадцатого столетия были сделаны во многих областях науки и оказали огромное влияние на дальнейшее развитие человечества.
Одно из главных открытий (изобретений) того века было изобретение электричества и лампочки. Ощутив все преимущества использования электроэнергии, человечество так и не смогло от неё отказаться.
Именно достижение в такой отрасли науки как физика сделали возможным появление электрического света. Изучением такого явления как электромагнитные волны занимались ещё в конце восемнадцатого столетия, тот же М. Ломоносов.
Термин электричество означает физическое явление, при котором двинуться и взаимодействуют между собой электрические заряды. Термин введён английским учёным-испытателем Уильямом Гилбертом ещё в шестнадцатом веке.
В эпоху девятнадцатого века, изучением электричества занимались: Томас Эдисон, Дж. Генри, Александр Ладыгин.
Учёный и изобретатель Майкл Фарадей во время эксперимента определил, что медная проволока находящиеся в магнитном поле пересекает силовые линии, тогда в ней начинает возникать электрический ток.
Наконец в тысяча восемьсот семьдесят третьем А. Лодыгин, - русский электротехник и физик продемонстрировал своё изобретение. Электрическая лампочка (лампа). Изобретение Лодыгина, это немного вытянутую колбу, внутри которой на двух медных проволоках, укреплен маленький стержень из ретортного угля. Электрический ток проходил непосредственно через оправу, таким образом лампа давала свет.
Но изобретение не могло работать дольше 40 минут в день. После России, - Франция, Германия, Англия, тоже занялись проектированием ламп подобного типа. Уже в 90-е годы девятнадцатого столетия германскими учёными был создан образец, - лампа которая может работать несколько часов. В это же время Эдисон сделал тоже самое в Соединенных штатах. В России к сожалению по началу к этому изобретению отнеслись с недоверием. Поэтому западные страны в развитии науки электричества продвинулся более вперёд России.
Именно благодаря электричеству стало возможным изобретение телефона Дж. Белла во второй половине 70-х годов, в Англии. И изобретение радио, русским ученым Поповым. Кстати историки и учёные до сих пор спорят, кто же первый изобрёл радио? Маркони или Попов. Именно радио и телеграф широко применялись на полях Первой, а затем Второй мировой войн.
На рубеже девятнадцатого и двадцатого века, европейские страны готовились к грядущей войне. За пол столетия (девятнадцатого века) предшествующие войне, человечество изобретает новое вооружение массового поражения, пулемёты, пушки большого калибра, автоматические винтовки. Поэтому научные прорывы касались не только созидания, но и разрушения и уничтожения людей. Поэт А. Ахматова, писала в дневнике «двадцатый век начался с 1914 года», то есть с началом войны мир (Европа) очнулась от дремоты. И сразу человечество попало в кошмар первой мировой. После Первой мировой через 21 год, последовала Вторая, - ещё более жестокая и кровавая.
Только после двух страшных мировых войн человечество осознало до какой степени опасны «мировые военные конфликты».
Именно прорыв в науке электричества сделал возможным прорывы в других науках (связанных с физикой) в двадцатом столетии.

19-й век заложил основы для развития науки 20-го столетия и создал предпосылки для многих будущих изобретений и технологических нововведений, которыми мы пользуемся в настоящее время. Научные открытия 19 века были сделаны во многих областях и оказали большое влияние на дальнейшее развитие. Технический прогресс неудержимо продвигался. Кому же мы благодарны за те комфортные условия, в которых сейчас живет современное человечество?

Научные открытия 19 века: Физика и электротехника

Ключевой особенностью в развитии науки этого периода времени является широкое применение электричества во всех отраслях производства. И люди уже не могли отказаться от использования электричества, ощутив его существенные преимущества. Много научных открытий 19 века было совершено в этой области физики. В то время ученые начали плотно изучать электромагнитные волны и их влияние на различные материалы. Началось внедрение электричества в медицину.

В 19-м веке в сфере электротехники работали такие известные ученые, как француз Андре-Мари Ампер, два англичанина Майкл Фарадей и Джеймс Кларк Максвелл, американцы Джозеф Генри и Томас Эдисон.

В 1831 году Майкл Фарадей заметил, что если медная проволока движется в магнитном поле, пересекая силовые линии, то в ней возникает электрический ток. Так появилось понятие электромагнитной индукции. Это открытие создало почву для изобретения электродвигателей.

В 1865 году Джеймс Кларк Максвелл разработал электромагнитную теорию света. Он предположил существование электромагнитных волн, посредством которых передается электрическая энергия в пространстве. В 1883 году Генрих Герц доказал существование этих волн. Он также определил, что скорость их распространения - 300 тыс. км/сек. На основе этого открытия Гульельмо Маркони и А. С. Попов создали беспроводный телеграф - радио. Это изобретение стало основой для современных технологий беспроводной передачи информации, радио и телевидения, в том числе всех видов мобильной связи, в основе работы которых лежит принцип передачи данных посредствам электромагнитных волн.

Химия

В области химии в 19 веке самым значительным было открытие Д.И. Менделеевым Периодического закона. На основе этого открытия была разработана таблица химических элементов, которую Менделеев увидел во сне. В соответствии с этой таблицей он предположил, что существуют еще неизвестные тогда химические элементы. Предсказанные химические элементы скандий, галлий и германий впоследствии были открыты в период с 1875 по 1886 гг.

Астрономия

ХІХ ст. было веком становления и стремительного развития еще одной области науки - астрофизики. Астрофизика - это раздел астрономии, который изучает свойства небесных тел. Этот термин появился в середине 60-х годов 19-го века. У истоков ее стоял немецкий профессор Лейпцигского университета астроном Иоганн Карл Фридрих Цёлльнер. Главные методы исследования, используемые в астрофизике - это фотометрия, фотография и спектральный анализ. Одним из изобретателей спектрального анализа является Кирхгоф. Он проводил первые исследования спектра Солнца. В результате этих исследований в 1859 г. ему удалось получить рисунок солнечного спектра и более точно определить химический состав Солнца.

Медицина и Биология

С приходом 19 века наука начинает развиваться с невиданной доселе скоростью. Научных открытий совершается столько, что трудно детально их отследить. Медицина и биология в этом не отстают. Самый значительный вклад в этой области сделали немецкий микробиолог Роберт Кох, французы медик Клод Берна́р и химик-микробиолог Луи Пастер.

Бернар заложил основы эндокринологии - науки о функциях и строении желез внутренней секреции. Луи Пастер стал одним из основоположников иммунологии и микробиологии. В честь этого ученого названа технология пастеризации - это способ термической обработки в основном жидких продуктов. Эта технология применяется для уничтожения вегетативных форм микроорганизмов для увеличения срока хранения пищевых продуктов, например пива и молока.

Роберт Кох открыл возбудителя туберкулёза, бациллу сибирской язвы и холерный вибрион. За открытие туберкулезной палочки он был награжден Нобелевской премией.

Полезная статейка:

Компьютеры

Хотя считается, что первый компьютер появился в 20 веке, но уже в XIX веке были построены первые прообразы современных станков с числовым программным управлением. Жозеф Мари Жаккар, французский изобретатель, в 1804 году придумал способ программирования работы ткацкого станка. Суть изобретения состояла в том, что нитью можно было управлять, используя перфокарты с отверстиями в определенных местах, в которых предполагалось нанести нить на ткань.

Машиностроение и промышленность

Уже в начале 19-го века начался постепенный переворот в машиностроении. Оливер Эванс был одним из первых, кто в 1804 году в Филадельфии (США) продемонстрировал автомобиль с паровым двигателем.

В конце 18-го столетия появились и первые токарные станки. Их разрабатывал английский механик Генри Модсли.

С помощью таких станков удалось заменить ручной труд, когда было необходимо производить обработку металла с большой точностью.

В 19 веке был открыт принцип работы теплового двигателя и изобретен двигатель внутреннего сгорания, что послужило толчком к развитию более скоростных средств передвижения: паровозов, пароходов и самоходных машин, которые мы сейчас называем автомобилями.

Также начали развиваться железные дороги. В 1825 году в Англии Георг Стефенсон простроил первую железную дорогу. Она обеспечивала железнодорожную связь городов Стоктон и Дарлингтон. В 1829 проложили ветку, которая связала Ливерпуль и Манчестер. Если в 1840 году общая протяженность железных дорог составляла 7700 км, то к концу 19-го века это уже было 1 080 000 км.

19-й век - это век промышленной революции, век электричества, век железных дорог. Он оказал существенное влияние на культуру и мировоззрение человечества, в корне изменил систему ценностей человека. Появление первых электродвигателей, изобретение телефона и телеграфа, радио и нагревательных приборов, а также лампы накаливания - все эти научные открытия 19 века перевернули жизнь людей того времени.

Введение

Научной революции XIX в. предшествовали выдающиеся открытия в науке XVII-XVIII вв. и становление ее как социального института. Появление экспериментального знания и рационалистического типа мышления способствовало последующему ее упорядочиванию в XIX в. Она становится научной системой, изучающей процессы происхождения и развития предметов явлений, организмов и их связей.

В XIX в. происходит дифференциация отдельных отраслей научных знаний на более узкие специальные отрасли (в самостоятельные науки выделяются экспериментальная психология, социология, культурология) и в то же время - интеграция наук (именно в это время возникает астрофизика, биохимия, физическая химия, геохимия), оформляется и новая отрасль знаний - технические науки. В течение столетия были сделаны неслыханную ранее количество открытий, а на основе накопленного экспериментального, аналитического материала разработан обобщающие теории.

Принципиально новым являлось утверждение идеи развития и принципа взаимосвязи в природе, т.е. к появлению принципов диалектики в научном исследовании. Научный эксперимент в механике привел к установлению связи науки и производства. На базе механики, физики и математики разрабатывалась техника и технология. И, наконец, классические представления человечества о времени и пространстве были разрушены теорией относительности Альберта Эйнштейна.

Таким образом, XIX-й век заложил основы для развития науки 20-го столетия и создал предпосылки для многих будущих изобретений и технологических нововведений, которыми мы пользуемся в настоящее время. Научные открытия были сделаны во многих областях и оказали большое влияние на дальнейшее развитие.

Технический прогресс неудержимо продвигался. Кому же мы благодарны за те комфортные условия, в которых сейчас живет современное человечество?

Цель работы: рассмотреть общую характеристику XIX века, а также некоторые научные открытия и их влияние на экономическое мировое развитие.

Работа состоит из введения, двух глав основной части, заключения и списка литературы.

1. XIX век - эпоха научных революций

Как уже отмечалось, в индустриальной цивилизации, утвердившейся в Европе в XIX столетии, главной ценностью стали считать научно-технический прогресс. И это не случайно. Как отметил П.Сорокин, «лишь только один XIX в. принес открытий и изобретений больше, чем все предшествующие столетия вместе взятые».век был воплощением неслыханного технического прогресса, были сделаны научные и технические открытия, которые привели к изменению образа жизни людей: его начало ознаменовалось освоением силы пара, созданием паровых машин и двигателей, которые позволили осуществить промышленный переворот, перейти от мануфактурного производства к промышленному, фабричному. Страны Европы и Северной Америки покрылись сетью железных дорог, что в свою очередь содействовало развитию промышленности и торговли. Начался выпуск первых синтетических материалов, искусственных волокон.

Научные открытия в области физики, химии, биологии, астрономии, геологии, медицины следовали одно за другим. Вслед за открытием Майклом Фарадеем явления электромагнитной дуги, Джеймс Максвелл предпринимает исследование электромагнитных полей, разрабатывает электромагнитную теорию света. Анри Беккерель, Пьер Кюри и Мария Склодовская-Кюри, изучая явление радиоактивности, поставили под вопрос прежнее понимание закона сохранения энергии.

Физическая наука проделала путь от атомной теории материи Джона Дальтона - к раскрытию сложной структуры атома. После обнаружения Дж.Дж. Томпсоном в 1897 г. первой элементарной частицы электрона последовали планетарные теории строения атома Эрнеста Резерфорда и Нильса Бора. Развиваются междисциплинарные исследования - физическая химия, биохимия, химическая фармакология.

Если сформулированный в 1869 г. Дмитрием Ивановичем Менделеевым периодический закон химических элементов установил зависимость между их атомными весами, то открытие внутреннего строения атома выявило связь между порядковым номером элемента в периодической системе и числом электронов в слоях оболочки атома.

В биологии появляются теории клеточного строения всех организмов Т. Швана, генетической наследственности Грегора Иоганна Менделя, опираясь на которые Август Вейсман и Томас Морган создали основы генетики. Основываясь на исследованиях в области физиологии высшей нервной деятельности, И.П. Павлов разработал теорию условных рефлексов.

Подлинную революцию в науке произвели труды великого ученого-натуралиста Чарльза Дарвина «Происхождение видов» и «Происхождение человека», которые иначе, чем христианское учение, трактовали возникновение мира и человека.

Достижения в области биологии и химии дали мощный толчок развитию медицины. Французский бактериолог Луи Пастер разработал метод предохранительных прививок против бешенства и других заразных болезней, механизм стерилизации и пастеризации различных продуктов, заложил основы учения об иммунитете. Немецкий микробиолог Роберт Кох и его ученики открыли возбудителей туберкулеза, брюшного тифа, дифтерита и других болезней, создали против них лекарства. В арсенале врачей появились новые лекарственные препараты и инструменты. Врачи стали применять аспирин и пирамидон, был изобретен стетоскоп, открыты рентгеновские лучи.век - «машинный век», - и это совершенно правильно, ведь именно тогда началось производство машин с помощью самих машин. От механической прялки «Дженни» человечество шагнуло к первому современному станку из металла, а от него - к автоматическому ткацкому станку Жаккара. в. называют «эпохой стали», - именно тогда уровень производства стали становится показателем экономической мощи страны. Железо и сталь вытесняют дерево.

Если XVII-XVIII вв. были эпохой ветряных мельниц, то с конца XVIII в. начинается эпоха пара. В 1784 г. Дж. Уатт изобрел паровой двигатель. А уже в 1803 в. появляется первый автомобиль с паровым двигателем. 17 августа 1807 г совершилась пробная поездка парохода Фультона «Клермон», а в 1814 г. появился на свет паровоз Дж. Стеф-фенсона.

Революцию в средствах транспорта дополнило развитие морских сообщений. Благодаря пару плавание перестало зависеть от силы ветра, и преодоление океанического пространства совершалось во все более и более короткие сроки. В конце XIX в. появляется автомобиль Г. Даймлера и К. Бенца, имеющий высокоэкономичный двигатель, работающий на жидком топливе, а в 1903 г. - первый самолет братьев У, и О.Райт. Параллельно шло строительство и совершенствование дорог, мостов, тоннелей, каналов (Суэцкий канал, 1859-1869)век - это век электричества. После открытия В.В. Петровым явления электрической дуги С. Морзе изобрел электрический телеграф, а А. Бэлл - телефон, а Т. Эдисон - фонограф. Появляются радиоприемники А.С. Попова и Г.Маркони, кинематограф братьев Люмьер. Важным новшеством стало электрическое освещение городов, конка уступала место трамваю. В 1863 г. появилась первая подземная железная дорога «Метрополитен», а к концу века метро функционировало уже в Лондоне, Париже, Нью-Йорке, Будапеште, Париже и других городах. Жизнь человека радикально изменилась. Благодаря открытиям и изобретениям техническое господство над пространством, временем и материей выросло безраздельно. Начался небывалый пространственно-временной рост цивилизации - в духовный мир человека входили новые территории и новые пласты прошлого.

Познание раздвинуло свои границы вглубь и вширь. Одновременно возникли и новые способы преодоления времени и пространства - новая техника с ее скоростями, средствами связи способствовала тому, что человек смог вместить в себе больший отрезок космического, любую точку планеты. Вселенная как бы одновременно сузилась и расширилась, все пришли в соприкосновение со всеми. Мир качественно преобразился.

В следующей главе мы более подробно раскроем некоторые научные открытия XIX века.

.1 Джеймс Кларк Максвелл (1831-1879)

Важнейшим фактором изменений облика мира является расширение горизонтов научных знаний. Ключевой особенностью в развитии науки этого периода времени является широкое применение электричества во всех отраслях производства. И люди уже не могли отказаться от использования электричества, ощутив его существенные преимущества. В это время ученые начали плотно изучать электромагнитные волны и их влияние на различные материалы.

Большим достижением науки XIX в. была выдвинутая английским ученым Д. Максвеллом электромагнитная теория света (1865 г.), которая обобщила исследования и теоретические выводы многих физиков разных стран в отраслях электромагнетизма, термодинамики и оптики.

Максвелл хорошо известен тем, что сформулировал четыре уравнения, которые явились выражением основных законов электричества и магнетизма. Эти две области широко исследовались до Максвелла на протяжении многих лет, и было хорошо известно, что они взаимосвязаны. Однако хотя уже были открыты различные законы электричества и они были истинными для специфических условий, до Максвелла не существовало ни одной общей и единообразной теории.

Д. Максвелл пришел к мысли о единстве и взаимосвязь электрических и магнитных полей, создал на этой основе теорию электромагнитного поля, согласно которой, возникнув в любой точке пространства, электромагнитное поле распространяться в нем со скоростью, равной скорости света. Таким образом он установил связь световых явлений с электромагнетизмом.

В своих четырех уравнениях, коротких, но довольно сложных, Максвелл сумел точно описать поведение и взаимодействие электрических и магнитных полей. Тем самым он трансформировал это сложное явление в единую, доступную для понимания теорию. Уравнения Максвелла находили широкое применение в прошлом веке как в теоретических, так и прикладных науках. Главным достоинством уравнений Максвелла было то, что они являются общими уравнениями, употребимыми при всех обстоятельствах. Все известные прежде законы электричества и магнетизма можно вывести из уравнений Максвелла, равно как и многие другие прежде неизвестные результаты.

Наиболее важные из этих результатов были выведены самим Максвеллом. Из его уравнений можно сделать вывод, что существует периодическое колебание электромагнитного поля. Начавшись, такие колебания, названные электромагнитными волнами, будут распространяться в пространстве. Из своих уравнений Максвелл сумел вывести, что скорость таких электромагнитных волн составила бы приблизительно 300000 километров (186000 миль) в секунду Максвелл увидел, что эта скорость равняется скорости света. Из этого он сделал правильный вывод о том, что свет сам состоит из электромагнитных волн. Таким образом, уравнения Максвелла являются не только основными законами электричества и магнетизма, они являются основными законами оптики. И действительно, все ранее известные законы оптики можно вывести из его уравнений, точно так же, как неизвестные ранее результаты и взаимосвязи. Видимый свет является не только возможным видом электромагнитного излучения.

Уравнения Максвелла показали, что могут существовать другие электромагнитные волны, отличающиеся от видимого света по длине волн и частоте. Эти теоретические выводы были впоследствии наглядно подтверждены Генрихом Герцем, который сумел как создавать, так и выпрямлять невидимые волны, существование которых предсказал Максвелл.

Впервые на практике наблюдать распространения электромагнитных волн удалось немецкому физику Г. Герцу (1883). Он также определил, что скорость их распространения - 300 тыс. км/сек. Парадоксально, но он считал, что электромагнитные волны не будут иметь практического применения. А уже через несколько лет, на основе этого открытия А.С. Попов применил их для передачи первой в мире радиограммы. Она состояла всего из двух слов: «Генрих Герц».

Сегодня мы с успехом используем их для телевидения. Рентгеновские лучи, гамма-лучи, инфракрасные лучи, ультрафиолетовые лучи являются еще одним примером электромагнитного излучения. Все это можно изучить посредством уравнений Максвелла. Хотя Максвелл добился признания главным образом благодаря его эффектному вкладу в электромагнетизм и оптику, он сделал также вклад в другие области науки, включая астрономическую теорию и термодинамику (изучение тепла). Предметом особого его интереса была кинетическая теория газов. Максвелл понял, что не все молекулы газа движутся с одинаковой скоростью. Одни молекулы движутся медленнее, другие быстрее, а некоторые движутся с очень высокой скоростью. Максвелл вывел формулу, которая определяет, какая частица молекулы данного газа будет двигаться при любой установленной скорости. Эта формула, получившая название «распределение Максвелла», широко используется в научных уравнениях и находит значительное применение во многих областях физики.

Это изобретение стало основой для современных технологий беспроводной передачи информации, радио и телевидения, в том числе всех видов мобильной связи, в основе работы которых лежит принцип передачи данных посредствам электромагнитных волн. После экспериментального подтверждения реальности электромагнитного поля было сделано фундаментальное научное открытие: существуют различные виды материи, и каждому из них присущи свои законы, не сводимые к законам механики Ньютона.

О роли Максвелла в развитии науки превосходно сказал американский физик Р. Фейнман: «В истории человечества (если посмотреть на нее, скажем, через десять тысяч лет) самым значительным событием девятнадцатого столетия, несомненно, будет открытие Максвеллом законов электродинамики. На фоне этого важного научного открытия гражданская война в Америке в том же десятилетии будет выглядеть провинциальным происшествием».

2.2 Чарльз Дарвин (1809 - 1882)

век стал временем торжества эволюционной теории. Чарльз Дарвин одним из первых осознал и наглядно продемонстрировал, что все виды живых организмов эволюционируют во времени от общих предков.

Обобщив идеи Ж. Ламарка о зависимости эволюции организмов от приспособленности их к окружающей среде, Ч. Лайеля об образовании земных слоев в зависимости от деятельности сил природы, клеточную теорию Т. Шванна и М. Шлейдена и собственные многолетние исследования, Дарвин в 1859 издал труд «Происхождение видов» (полное название: «Происхождение видов методом естественного отбора, или выживание благоприятствуемых пород в борьбе за жизнь»), в которой изложил выводы о том, что виды растений и животных не постоянны, а изменчивы, что современный животный мир сформировался в результате длительного процесса развития.

Основной движущей силой эволюции Дарвин назвал естественный отбор и неопределённую изменчивость. Правда, о причинах изменчивости видов Дарвин, по его словам, выдвинул лишь «догадливые» предположение. Эти причины удалось разгадать австрийскому исследователю Г. Менделю, который сформулировал законы наследственности.

Дарвин приводит множество доказательств повышения приспособленности организмов к условиям среды, обусловленной естественным отбором. Это, например, широкое распространение среди животных покровительственной окраски, делающей их менее заметными в местах обитания: ночные бабочки имеют окраску тела, соответствующую поверхности, на которой они проводят день; самки открыто гнездящихся птиц (глухарь, тетерев, рябчик) имеют окраску оперения, почти не отличимую от окружающего фона; на Крайнем Севере многие животные окрашены в белый цвет (куропатки, медведи) и т.д. Многие животные, имеющие специальные защитные приспособления от поедания их другими животными, имеют, кроме того, предупреждающую окраску (например, ядовитые или несъедобные виды). У некоторых животных распространена угрожающая окраска в виде ярких отпугивающих пятен (например, у хомяка брюшко имеет яркую окраску). Многие животные, не имеющие специальных средств защиты, по форме тела и окраске подражают защищенным (мимикрия). У многих из них имеются иглы, колючки, хитиновый покров, панцирь, раковина, чешуя и т.п. У животных большую роль в качестве приспособлений играют различного рода инстинкты (инстинкт заботы о потомстве, инстинкты, связанные с добыванием пищи, и т.д.). Среди растений широко распространены самые разнообразные приспособления к перекрестному опылению, рассеиванию плодов и семян. Все эти приспособления могли появиться лишь в результате естественного отбора, обеспечивая существование вида в определенных условиях.

Вместе с тем Дарвин отмечает, что приспособленность организмов к среде обитания (их целесообразность), наряду с совершенством, носит относительный характер. Это означает, что при изменении условий полезные признаки могут оказаться бесполезными или даже вредными. Например, у водных растений, поглощающих воду и растворенные в ней вещества всей поверхностью тела, слабо развита корневая система, но хорошо развиты поверхность побега и воздухоносная ткань - аэренхима, образованная системой межклетников, пронизывающих все тело растения. Это увеличивает поверхность соприкосновения с окружающей средой, обеспечивая лучший газообмен, и позволяет растениям полнее использовать свет и поглощать углекислый газ. Но при пересыхании водоема такие растения очень быстро погибнут. Все их приспособительные признаки, обеспечивающие их процветание в водной среде, оказываются бесполезными вне ее.

Другой важный результат эволюции - нарастание многообразия видов естественных групп, т.е. систематическая дифференцировка видов. Общее нарастание многообразия органических форм весьма усложняет те взаимоотношения, которые возникают между организмами в природе. Поэтому в ходе исторического развития наибольшее преимущество получают, как правило, высокоорганизованные формы, в результате чего осуществляется поступательное развитие органического мира на Земле от низших форм к высшим. Вместе с тем, констатируя факт прогрессивной эволюции, Дарвин не отрицает морфофизиологического регресса (т.е. эволюции форм, приспособление которых к условиям среды идет через упрощение организации), а также такого направления эволюции, которое не вызывает ни усложнения, ни упрощения организации живых форм. Сочетание различных направлений эволюции приводит к одновременному существованию форм, различающихся по уровню организации.

Сущность эволюционного учения заключается в следующих основных положениях:

Возникнув естественным путем, органические формы медленно и постепенно преобразовывались и совершенствовались в соответствии с окружающими условиями.

В основе преобразования видов в природе лежат такие свойства организмов, как наследственность и изменчивость, а также постоянно происходящий в природе естественный отбор. Естественный отбор осуществляется через сложное взаимодействие организмов друг с другом и с факторами неживой природы; эти взаимоотношения Дарвин назвал борьбой за существование.

Результатом эволюции является приспособленность организмов к условиям их обитания и многообразие видов в природе.

Дарвиновская концепция эволюции сводится к ряду логичных, проверяемых в эксперименте и подтвержденных огромным количеством фактических данных положений:

В пределах каждого вида живых организмов существует огромный размах индивидуальной наследственной изменчивости по морфологическим, физиологическим, поведенческим и любым другим признакам. Эта изменчивость может иметь непрерывный, количественный, или прерывистый качественный характер, но она существует всегда.

Все живые организмы размножаются в геометрической прогрессии.

Жизненные ресурсы для любого вида живых организмов ограничены, и поэтому должна возникать борьба за существование либо между особями одного вида, либо между особями разных видов, либо с природными условиями. В понятие «борьба за существование» Дарвин включил не только собственно борьбу особи за жизнь, но и борьбу за успех в размножении.

В условиях борьбы за существование выживают и дают потомство наиболее приспособленные особи, имеющие те отклонения, которые случайно оказались адаптивными к данным условиям среды. Это принципиально важный момент в аргументации Дарвина. Отклонения возникают не направленно - в ответ на действие среды, а случайно. Немногие из них оказываются полезными в конкретных условиях. Потомки выжившей особи, которые наследуют полезное отклонение, позволившее выжить их предку, оказываются более приспособленными к данной среде, чем другие представители популяции.

Выживание и преимущественное размножение приспособленных особей Дарвин назвал естественным отбором.

Естественный отбор отдельных изолированных разновидностей в разных условиях существования постепенно ведет к дивергенции (расхождению) признаков этих разновидностей и, в конечном счете, к видообразованию.

На этих постулатах, безупречных с точки зрения логики и подкрепленных огромным количеством фактов, была создана современная теория эволюции.

Главным результатом эволюции является совершенствование приспособленности организмов к условиям обитания, что влечет за собой совершенствование их организации. В результате действия естественного отбора сохраняются особи с полезными для их процветания признаками.

Главная заслуга Дарвина в том, что он установил механизм эволюции, объясняющий как многообразие живых существ, так и их изумительную целесообразность, приспособленность к условиям существования. Этот механизм - постепенный естественный отбор случайных ненаправленных наследственных изменений.

В 1871 выходит его книга «Происхождение человека и половой отбор», где выдвинул и обосновал гипотезу о происхождении человека от обезьяноподобных предков. Учение Дарвина произвело ошеломляющее впечатление на общественное сознание.

Существование эволюции было признано большинством учёных. Эволюционная теория Дарвина представляет собой целостное учение об историческом развитии органического мира. Она охватывает широкий круг проблем, важнейшими из которых являются доказательства эволюции, выявление движущих сил эволюции, определение путей и закономерностей эволюционного процесса и др. Идеи и открытия Дарвина в переработанном виде формируют фундамент современной синтетической теории эволюции и составляют основу биологии, как обеспечивающие логическое объяснение биоразнообразия.

2.3 Пьер-Симон Лаплас (1749-1827)

научный открытие максвелл дарвин лаплас

Научная деятельность Лапласа была чрезвычайно разнообразной. Научное наследие Лапласа относится к области небесной механики, математики и математической физики.

Его перу принадлежат фундаментальные работы по дифференциальным уравнениям, в частности по интегрированию методом «каскадов» уравнений с частными производными. Он ввел в математику шаровые функции, которые применяются для нахождения общего решения уравнения Лапласа и при решении задач математической физики для областей, ограниченных сферическими поверхностями.

В алгебре Лапласу принадлежит важная теорема о представлении определителей суммой произведений дополнительных миноров.

Доказал теорему об отклонении частоты появления события от его вероятности, которая теперь называется предельной теоремой Муавра-Лапласа.

Развил теорию ошибок. Ввел теоремы сложения и умножения вероятностей, понятия производящих функций и математического ожидания.

Наибольшее количество исследований Лапласа относится к небесной механике. Он стремился все видимые движения небесных тел объяснить, опираясь на закон всемирного тяготения Ньютона, и это ему удалось. Лаплас доказал устойчивость Солнечной системы; показал, что средняя скорость движения Луны зависит от эксцентриситета земной орбиты, а тот в свою очередь меняется под действием притяжения планет. Лаплас доказал, что это движение долгопериодическое и что через некоторое время Луна станет двигаться замедленно. Он определил величину сжатия Земли у полюсов. В 1780г. Лаплас предложил новый способ вычисления орбит небесных тел. Пришел к выводу, что кольцо Сатурна не может быть сплошным, иначе оно было бы неустойчивым. Предсказал сжатие Сатурна у полюсов; установил законы движения спутников Юпитера. Полученные результаты были опубликованы Лапласом в его пятитомном классическом сочинении «Трактат о небесной механике» (1798-1825гг.)

В физике Лаплас вывел формулу для скорости распространения звука в воздухе, создал ледяной колориметр. Получил барометрическую формулу для вычисления изменения плотности воздуха с высотой, учитывающего его влажность, выполнил ряд работ по теории капиллярности и установил закон (носящий его имя), который позволяет определить величину капиллярного давления и тем самым записать условие механического равновесия для подвижных (жидких) поверхностей раздела.

Недавно ученые имели возможность еще раз оценить прозорливость Лапласа. В «Изложении системы мира» приводится доказательство того, что «сила притяжения небесного тела могла бы быть столь велика, что от него не будет исходить свет». Это произойдет, если у тела будет та же плотность, что и у Земли, а диаметр равен 250 диаметрам Солнца. Другими словами, первая космическая скорость в поле тяготения этого тела превышает скорость света. Таким образом, Лаплас был первым, кто обратил внимание на возможность существования «черных дыр». Жизнь Лапласа в значительной степени отражает сложность эпохи, в которую он жил. Однако через всю своею жизнь он про нес верность науке, ни при каких обстоятельствах не прерывая занятий. Роль Лапласа в истории науки трудно переоценить. «...Лаплас был рожден для того, чтобы все углублять, отодвигать все границы, чтобы решать то, что казалось неразрешимым. Он кончил бы науку о небе, если бы эта наука могла быть окончена».

2.4 Джон Дальтон (1766 - 1844)

Наука XIX в. ознаменована и революцией в химии. В развитии химии XIX века проблема химического состава веществ была главной, т.к. в это время мануфактурное производство сменилось машинным, а для последнего была необходима широкая сырьевая база. В промышленном производстве стала преобладать переработка огромных масс вещества растительного и животного происхождения. В производстве стали участвовать вещества с различными (часто противоположными) качествами, состоящие лишь из нескольких химических элементов органического происхождения: углерод, водород, кислород, сера, фосфор. Объяснение этому широкому разнообразию органических соединений, возникших на базе ограниченного числа химических элементов, ученые стали искать не только в составе, но и в структуре соединения этих элементов. Кроме того, многочисленные лабораторные эксперименты и опыты убедительно доказывали, что свойства полученных в результате химических реакций веществ зависят не только от элементов, но и от взаимосвязи и взаимодействия элементов в процессе реакции. Поэтому химики стали все больше обращаться к проблеме структуры вещества и взаимодействию составных элементов вещества.

Первым ученым, который добился значительных успехов в новом направлении развития химии, стал английский химик Джон Дальтон, который вошел в историю химии как первооткрыватель закона кратных отношений и создатель основ атомной теории. Дж. Далтон показал, что каждый элемент природы составляет совокупность атомов, строго одинаковых между собой и обладающих единым атомным весом. Благодаря этой теории в химию проникли идеи системного развития процессов.

Все свои теоретические выводы он получил на основе сделанного им самим открытия, что два элемента могут соединяться друг с другом в разных соотношениях, но при этом каждая новая комбинация элементов представляет собой новое соединение. Подобно древним атомистам, Дальтон исходил из положения о корпускулярном строении материи, но, основываясь на сформулированном Лавуазье понятии химического элемента, полагал, что все атомы каждого отдельного элемента одинаковы и характеризуются тем, что обладают определенным весом, который он назвал атомным весом. Таким образом, каждый элемент обладает своим атомным весом, но этот вес относителен, так как абсолютный вес атомов определить невозможно. В качестве условной единицы атомного веса элементов Дальтон принимает атомный вес самого легкого из всех элементов - водорода, и сопоставляет с ним вес других элементов. Для экспериментального подтверждения этой идеи необходимо, чтобы элемент соединился с водородом, образуя определенное соединение. Если этого не происходит, то необходимо, чтобы данный элемент соединялся с другим элементом, о котором известно, что он способен соединяться с водородом. Зная вес этого другого элемента относительно водорода, можно всегда найти отношение веса данного элемента к принятому за единицу веса водорода.

Рассуждая таким образом, Дальтон составил первую таблицу относительных атомных весов водорода, азота, углерода, серы и фосфора, приняв за единицу атомную массу водорода. Эта таблица и была самой важной работой Дальтона.

Дальтон так убедительно представил свою теорию, что за двадцать лет ее приняло большинство ученых. Более того, химики стали следовать программе, предложенной в книге: точное определение относительных атомных весов, анализ химических соединений по весу, определение точных комбинаций атомов, которые составляют каждый вид молекул. Успех этой программы, конечно, был ошеломляющим. Трудно переоценить важность гипотезы существования атомов. Это основное понятие в современной химии. К тому же это еще стали неоценимым прологом к многим направлениям современной физики.

Заключение

В данной работе кратко дана общая характеристика XIX века, а также более подробно рассмотрены некоторые научные открытия рассматриваемого периода.

Бурное развитие науки в XIX веке, привело к значительному числу открытий принципиального характера, положивших начало новым направлениям научно-технического прогресса, и которые привели к изменению образа жизни всего человечества.

Дж. Максвелл - английский физик, создатель классической электродинамики, который сформулировал четыре уравнения, которые явились выражением основных законов электричества и магнетизма.

Дж. Дальтон - английский химик и естествоиспытатель, ввел в науку теорию атома. Сделав это, он подал ключевую идею, которая с тех пор вызвала огромный прогресс в химии.

Пьер С.Лаплас - французский математик, физик и астроном, известен работами в области небесной механики, дифференциальных уравнений, один из создателей теории вероятностей. Заслуги Лапласа в области чистой и прикладной математики и особенно в астрономии громадны: он усовершенствовал почти все отделы этих наук.

Эволюционная теория Ч.Дарвина, английского натуралиста - целостное учение об историческом развитии органического мира, которая охватывает широкий круг проблем, важнейшими из которых являются доказательства эволюции, выявление движущих сил эволюции, определение путей и закономерностей эволюционного процесса и др.

Список используемой литературы

1.Бляхер Л.Я. История биологии с древнейших времён до начала ХХ века. Основные черты учения Ч. Дарвина / Л.Я. Бляхер. - М.: Наука, 1972. - С. 112-122.

.Ельяшевич М.А. Вклад Максвелла в развитие молекулярной физики и статистических методов / М.А. Ельяшевич, Т.С. Протько. // УФН. - 1981. - С.381-423.

.История мировой культуры (мировых цивилизаций). Европейская культура XIX века / Под ред. Г.В. Драча. - Ростов-на-Дону: Феникс, 2004. - 544 с.

.Культурология / Под ред. Г.В. Драча. - М.: Альфа-М, 2003. - 432 с.

Многие научные открытия в области физики, сделанные в XIX веке, положили начало мощному научно-техническому прогрессу. Первые электродвигатели, телефон и телеграф, радио, лампа накаливания – все эти открытия изменили в корне жизнь людей.

Этот век подарил человечеству совершенно новые теории в классической физике – электродинамику, термодинамику. Именно в XIX веке было установлено, что все известные виды энергии: механическая, тепловая, электрическая и магнитная - переходят друг в друга.

Классическая электродинамика

Андре-Мари Ампер

В 1820 г. датский физик Ханс Кристиан Эрстед обнаружил, что вокруг проводника с электрическим током существует магнитное поле . Так было открыто электромагнитное действие электрического тока .
Первая теория магнетизма, основанная на единстве электрических и магнитных явлений, была разработана известным французским физиком Андре-Мари Ампером. Он ввёл понятие «электрический ток» и «электрическая цепь». Кроме этого,он различил понятия электрический ток и электрическое напряжение. В его честь единица силы тока стала называться ампер. А все явления магнетизма стали объясняться не наличием магнитной жидкости, как это было в XVIII веке, а электродинамическим взаимодействием. В 1831 г. на основе исследований Эрстеда и Ампера английский учёный Майкл Фарадей открыл явление электромагнитной индукции. Фарадей проводил опыт с медной проволокой, которая двигалась в магнитном поле, пересекая его силовые линии. Он обнаружил, что в проволоке возникал электрический ток. В дальнейшем открытие Фарадея привело к созданию магнитоэлектрических генераторов и электрических двигателей. Электротехника получила бурное развитие.

Электромагнитная теория

Джеймс Клерк Максвелл

Годом создания электромагнитной теории считается 1865 г. Именно в этом году британский физик Джеймс Клерк Максвелл предположил, что электрическая энергия передаётся в пространстве с помощью электромагнитных волн. Существование этих волн было доказано в 1883 г. немецким физиком Генрихом Рудольфом Герцом. Была вычислена и скорость их распространения, которая составляла 300 тысяч км/сек. Это открытие позволило впоследствии создать радио. А радио стало первой технологией беспроводной передачи сигнала. Современное телевидение и мобильная связь также основаны на принципе передачи информации с помощью электромагнитных волн.

Термодинамика

Сади Карно

Французский физик Сади Карно в 1824 г. в книге "Размышления о движущей силе огня" исследовал принцип получения движения из тепла применительно к паровым машинам. Он пришёл к выводу, что существует общий метод решения этой задачи для всех тепловых машин, а не только для паровых. Этот метод был назван термодинамическим. Определяя коэффициент полезного действия паровых машин, Карно описал цикл, впоследствии названный его именем.

Открытие принципа работы теплового двигателя, изобретение двигателя внутреннего сгорания привело к появлению принципиально новых средств передвижения - паровозов, пароходов и машин, которые стали прообразами современных автомобилей.

Открытие радиоактивности

Вильгельм Конрад Рентген

В 1895 г. выдающимся немецким учёным Вильгельмом Конрадом Рентгеном были открыты лучи, названые его именем. А в 1896 г. французский физик Антуан Анри Беккерель, изучая рентгеновские лучи, открыл радиоактивность урана. В 1898 г. Мария и Пьер Кюри установили радиоактивность тория, а позже открыли радиоактивные элементы полоний и радий. А английский физик Эрнест Резерфорд установил сложный состав радиоактивного излучения. Он выяснил, что распадаясь, радиоактивные элементы излучают обладающие положительным зарядом альфа-лучи, отрицательно заряженные бета-луч и нейтральные гамма-лучи.

К сожалению, открытие радиоактивности было использовано в следующем веке не только во благо человечества. Хотя в целом научные открытия XIX века заложили основы для развития важнейших отраслей науки и техники в XX веке.