Чему равна производная функции определяемой уравнением. Что такое производная?Определение и смысл производной функции. Скорость изменения функции

Пусть функция определена в точкеи некоторой ее окрестности. Придадим аргументуприращениетакое, что точкапопадает в область определения функции. Функция при этом получит приращение.

ОПРЕДЕЛЕНИЕ. Производной функции в точке называется предел отношения приращения функции в этой точке к приращению аргумента , при(если этот предел существует и конечен), т.е.

Обозначают: ,,,.

Производной функции в точкесправа (слева) называется

(если этот предел существует и конечен).

Обозначают: ,– производнаяв точкесправа,

,– производнаяв точкеслева.

Очевидно, что справедлива следующая теорема.

ТЕОРЕМА. Функция имеет производную в точкетогда и только тогда, когда в этой точке существуют и равны между собой производные функции справа и слева. Причем

Следующая теорема устанавливает связь между существованием производной функции в точке и непрерывностью функции в этой точке.

ТЕОРЕМА (необходимое условие существования производной функции в точке). Если функция имеет производную в точке, то функцияв этой точке непрерывна.

ДОКАЗАТЕЛЬСТВО

Пусть существует . Тогда

,

где – бесконечно малая при.

Замечание

производной функции и обозначают

дифференцированием функции .

    ГЕОМЕТРИЧЕЧКИЙ И ФИЗИЧЕСКИЙ СМЫСЛ

1) Физический смысл производной . Если функция и ее аргументявляются физическими величинами, то производная– скорость изменения переменнойотносительно переменнойв точке. Например, если– расстояние, проходимое точкой за время, то ее производная– скорость в момент времени. Если– количество электричества, протекающее через поперечное сечение проводника в момент времени, то– скорость изменения количества электричества в момент времени, т.е. сила тока в момент времени.

2) Геометрический смысл производной.

Пусть – некоторая кривая,– точка на кривой.

Любая прямая, пересекающая не менее чем в двух точках называетсясекущей .

Касательной к кривой в точке называется предельное положение секущей , если точкастремится к, двигаясь по кривой.

Из определения очевидно, что если касательная к кривой в точке существует, то она единственная

Рассмотрим кривую (т.е. график функции). Пусть в точкеон имеет невертикальную касательную. Ее уравнение:(уравнение прямой, проходящей через точкуи имеющую угловой коэффициент).

По определению углового коэффициента

где – угол наклона прямойк оси.

Пусть – угол наклона секущейк оси, где. Так как– касательная, то при

Следовательно,

Таким образом, получили, что – угловой коэффициент касательной к графику функции в точке (геометрический смысл производной функции в точке). Поэтому уравнение касательной к кривой в точкеможно записать в виде

Замечание . Прямая, проходящая через точку перпендикулярно касательной, проведенной к кривой в точке, называетсянормалью к кривой в точке . Так как угловые коэффициенты перпендикулярных прямых связаны соотношением , то уравнение нормали к кривойв точкебудет иметь вид

, если .

Если же , то касательная к кривойв точкебудет иметь вид

а нормаль .

    УРАВНЕНИЯ КАСАТЕЛЬНОЙ И НОРМАЛИ

Уравнение касательной

Пусть функция задается уравнением y =f (x ), нужно написать уравнение касательной в точке x 0. Из определения производной:

y /(x )=limΔx →0Δy Δx

Δy =f (x x )−f (x ).

Уравнение касательной к графику функции: y =kx +b (k ,b =const ). Из геометрического смысла производной: f /(x 0)=tg α=k Т.к. x 0 и f (x 0)∈ прямой, то уравнение касательной записывается в виде: y f (x 0)=f /(x 0)(x x 0) , или

y =f /(x 0)·x +f (x 0)−f /(x 0)·x 0.

Уравнение нормали

Нормаль - это перпендикуляр к касательной (см. рисунок). Исходя из этого:

tg β=tg (2π−α)=ctg α=1tg α=1f /(x 0)

Т.к. угол наклона нормали -- это угол β1, то имеем:

tg β1=tg (π−β)=−tg β=−1f /(x ).

Точка (x 0,f (x 0))∈ нормали, уравнение примет вид:

y f (x 0)=−1f /(x 0)(x x 0).

ДОКАЗАТЕЛЬСТВО

Пусть существует . Тогда

,

где – бесконечно малая при.

Но это означает, что непрерывна в точке(см. геометрическое определение непрерывности). ∎

Замечание . Непрерывность функции в точке не является достаточным условием существования производной этой функции в точке. Например, функциянепрерывна, но не имеет производной в точке. Действительно,

и, следовательно, не существует.

Очевидно, что соответствие является функцией, определенной на некотором множестве. Ее называютпроизводной функции и обозначают

Операцию нахождения для функции ее производной функции называютдифференцированием функции .

    Производная суммы и разности

Пусть даны функции f(x) и g(x), производные которых нам известны. К примеру, можно взять элементарные функции, которые рассмотрены выше. Тогда можно найти производную суммы и разности этих функций:

    (f + g)’ = f ’ + g ’

    (f − g)’ = f ’ − g ’

Итак, производная суммы (разности) двух функций равна сумме (разности) производных. Слагаемых может быть больше. Например, (f + g + h)’ = f ’ + g ’ + h ’.

Строго говоря, в алгебре не существует понятия «вычитание». Есть понятие «отрицательный элемент». Поэтому разность f − g можно переписать как сумму f + (−1) · g, и тогда останется лишь одна формула - производная суммы.

При решении различных задач геометрии, механики, физики и других отраслей знания возникла необходимость с помощью одного и того же аналитического процесса из данной функции y=f(x) получать новую функцию, которую называют производной функцией (или просто производной) данной функции f(x) и обозначают символом

Тот процесс, с помощью которого из данной функции f(x) получают новую функцию f " (x) , называют дифференцированием и состоит он из следующих трех шагов: 1) даем аргументу x приращение  x и определяем соответствующее приращение функции  y = f(x+  x) -f(x) ; 2) составляем отношение

3) считая x постоянным, а  x 0, находим
, который обозначаем черезf " (x) , как бы подчеркивая тем самым, что полученная функция зависит лишь от того значения x , при котором мы переходим к пределу. Определение : Производной y " =f " (x) данной функции y=f(x) при данном x называется предел отношения приращения функции к приращению аргумента при условии, что приращение аргумента стремится к нулю, если, конечно, этот предел существует, т.е. конечен. Таким образом,
, или

Заметим, что если при некотором значении x , например при x=a , отношение
при x 0 не стремится к конечному пределу, то в этом случае говорят, что функция f(x) при x=a (или в точке x=a ) не имеет производной или не дифференцируема в точке x=a .

2. Геометрический смысл производной.

Рассмотрим график функции у = f (х), дифференцируемой в окрест­ностях точки x 0

f(x)

Рассмотрим произвольную прямую, проходящую через точку гра­фика функции - точку А(x 0 , f (х 0)) и пересекающую график в некоторой точке B(x;f(x)). Такая прямая (АВ) называется секущей. Из ∆АВС: АС = ∆x; ВС =∆у; tgβ=∆y/∆x .

Так как АС || Ox, то ALO = BAC = β (как соответственные при параллельных). Но ALO - это угол наклона секущей АВ к положи­тельному направлению оси Ох. Значит, tgβ = k - угловой коэффициент прямой АВ.

Теперь будем уменьшать ∆х, т.е. ∆х→ 0. При этом точка В будет прибли­жаться к точке А по графику, а секущая АВ будет поворачиваться. Пре­дельным положением секущей АВ при ∆х→ 0 будет прямая (a), называемая касательной к графику функции у = f (х) в точке А.

Если перейти к пределу при ∆х → 0 в равенстве tgβ =∆y/∆x, то получим
илиtg =f "(x 0), так как
-угол накло­на касательной к положительному направлению оси Ох
, по определению производной. Но tg = k - угловой коэффициент каса­тельной, значит, k = tg = f "(x 0).

Итак, геометрический смысл производной заключается в следую­щем:

Производная функции в точке x 0 равна угловому коэффициенту ка­сательной к графику функции, проведенной в точке с абсциссой x 0 .

3. Физический смысл производной.

Рассмотрим движение точки по прямой. Пусть задана координата точки в любой момент времени x(t). Известно (из курса физики), что средняя скорость за промежуток времени равна отношению расстояния, пройденного за этот промежуток времени, на время, т.е.

Vср = ∆x/∆t. Перейдем к пределу в последнем равенстве при ∆t → 0.

lim Vср (t) = (t 0) - мгновенная скорость в момент времени t 0 , ∆t → 0.

а lim = ∆x/∆t = x"(t 0) (по определению производной).

Итак, (t) =x"(t).

Физический смысл производной заключается в следующем: произ­водная функции y = f (x ) в точке x 0 - это скорость изменения функции f (х) в точке x 0

Производная применяется в физике для нахождения скорости по известной функции координаты от времени, ускорения по известной функции скорости от времени.

(t) = x"(t) - скорость,

a(f) = "(t) - ускорение, или

Если известен закон движения материальной точки по окружности, то можно найти угловую скорость и угловое ускорение при вращатель­ном движении:

φ = φ(t) - изменение угла от времени,

ω = φ"(t) - угловая скорость,

ε = φ"(t) - угловое ускорение, или ε = φ"(t).

Если известен закон распределения массы неоднородного стержня, то можно найти линейную плотность неоднородного стержня:

m = m(х) - масса,

x  , l - длина стержня,

р = m"(х) - линейная плотность.

С помощью производной решаются задачи из теории упругости и гармонических колебаний. Так, по закону Гука

F = -kx, x – переменная координата, k- коэффициент упругости пружины. Положив ω 2 =k/m, получим дифференциальное уравнение пружинного маятника х"(t) + ω 2 x(t) = 0,

где ω = √k/√m частота колебаний (l/c), k - жесткость пружины (H/m).

Уравнение вида у" + ω 2 y = 0 называется уравнением гармонических колебаний (механических, электрических, электромагнитных). Решени­ем таких уравнений является функция

у = Asin(ωt + φ 0) или у = Acos(ωt + φ 0), где

А - амплитуда колебаний, ω - циклическая частота,

φ 0 - начальная фаза.

Производной функции называется базовый элемент в дифференциальном исчислении. Этот элемент и является определенным результатом применения какой-то определенной операции дифференцирования по отношению к исходной функции.

Определение производной

Для того, чтобы понять, что такое производная, необходимо знать, что название функции происходит непосредственно от слова «произведенная», то есть образовавшаяся от другой какой-либо величины. При этом сам процесс определения производной какой-то определенной функции имеет название - «дифференцирование».

Наиболее распространенный метод представления и определения, при использовании теории пределов, несмотря на то, что она появилась гораздо позже дифференциальных исчислений. По определению данной теории, производной называется предел в отношении приращения функций к приращению аргумента, в случае если таковой предел имеется, и при условии, что данный аргумент стремится к нулевому значению.

Рассмотренный ниже небольшой пример поможет наглядно понять, что такое производная.

  1. Для поиска производной функции f в точке х, нам нужно определить значения данной функции непосредственно в точке х, а так же в точке х+Δх. Причем Δx – это приращения аргумента х.
  2. Найти приращение для функции у приравненное к f(х+Δх) – f(х).
  3. Записать производную при помощи предела отношения f’ = lim(f(x+Δх) – f(x))/Δх, исчислить при Δх → 0.

Обычно производная обозначается знаком апострофа - «’» непосредственно над дифференцируемой функцией. Обозначение в виде одного апострофа обозначает первую производную, в виде двух – вторую. Производную наивысшего порядка принято задавать соответствующей цифрой, к примеру f^(n) – что означает производную n-го порядка, где буква «n» – целое число, которое? 0. Производная нулевого порядка - это и есть сама дифференцируемая функция.

С целью облегчения дифференцирования усложненных функций, были разработаны и приняты определенные правила дифференцирования функций:

  • С’ = 0, где С – обозначение константы;
  • х’ равняется 1;
  • (f + g)’ приравнивается f’ + g’;
  • (С*f)’ приравнено C*f’ и так далее.
  • Для N-кратного дифференцирования удобнее применять формулу Лейбница в виде: (f*g) (n) = Σ C(н) k *f (н-k) *g к, в которой С(н) к – обозначения биномиальных коэффициентов.

Производная и геометрия

Геометрическое осмысление производной заключается в том, что если для функции f имеется конечная производная в пункте х, то значение данной производной будет равняться тангенсу угла от наклона в касательной к функции f в данной точке.

Запомнить очень легко.

Ну и не будем далеко ходить, сразу же рассмотрим обратную функцию. Какая функция является обратной для показательной функции? Логарифм:

В нашем случае основанием служит число:

Такой логарифм (то есть логарифм с основанием) называется «натуральным», и для него используем особое обозначение: вместо пишем.

Чему равен? Конечно же, .

Производная от натурального логарифма тоже очень простая:

Примеры:

  1. Найди производную функции.
  2. Чему равна производная функции?

Ответы: Экспонента и натуральный логарифм - функции уникально простые с точки зрения производной. Показательные и логарифмические функции с любым другим основанием будут иметь другую производную, которую мы с тобой разберем позже, после того как пройдем правила дифференцирования.

Правила дифференцирования

Правила чего? Опять новый термин, опять?!...

Дифференцирование - это процесс нахождения производной.

Только и всего. А как еще назвать этот процесс одним словом? Не производнование же... Дифференциалом математики называют то самое приращение функции при. Происходит этот термин от латинского differentia — разность. Вот.

При выводе всех этих правил будем использовать две функции, например, и. Нам понадобятся также формулы их приращений:

Всего имеется 5 правил.

Константа выносится за знак производной.

Если - какое-то постоянное число (константа), тогда.

Очевидно, это правило работает и для разности: .

Докажем. Пусть, или проще.

Примеры.

Найдите производные функций:

  1. в точке;
  2. в точке;
  3. в точке;
  4. в точке.

Решения:

  1. (производная одинакова во всех точках, так как это линейная функция, помнишь?);

Производная произведения

Здесь все аналогично: введем новую функцию и найдем ее приращение:

Производная:

Примеры:

  1. Найдите производные функций и;
  2. Найдите производную функции в точке.

Решения:

Производная показательной функции

Теперь твоих знаний достаточно, чтобы научиться находить производную любой показательной функции, а не только экспоненты (не забыл еще, что это такое?).

Итак, где - это какое-то число.

Мы уже знаем производную функции, поэтому давай попробуем привести нашу функцию к новому основанию:

Для этого воспользуемся простым правилом: . Тогда:

Ну вот, получилось. Теперь попробуй найти производную, и не забудь, что эта функция - сложная.

Получилось?

Вот, проверь себя:

Формула получилась очень похожая на производную экспоненты: как было, так и осталось, появился только множитель, который является просто числом, но не переменной.

Примеры:
Найди производные функций:

Ответы:

Это просто число, которое невозможно посчитать без калькулятора, то есть никак не записать в более простом виде. Поэтому в ответе его в таком виде и оставляем.

    Заметим, что здесь частное двух функций, поэтому применим соответствующее правило дифференцирования:

    В этом примере произведение двух функций:

Производная логарифмической функции

Здесь аналогично: ты уже знаешь производную от натурального логарифма:

Поэтому, чтобы найти произвольную от логарифма с другим основанием, например, :

Нужно привести этот логарифм к основанию. А как поменять основание логарифма? Надеюсь, ты помнишь эту формулу:

Только теперь вместо будем писать:

В знаменателе получилась просто константа (постоянное число, без переменной). Производная получается очень просто:

Производные показательной и логарифмической функций почти не встречаются в ЕГЭ, но не будет лишним знать их.

Производная сложной функции.

Что такое «сложная функция»? Нет, это не логарифм, и не арктангенс. Данные функции может быть сложны для понимания (хотя, если логарифм тебе кажется сложным, прочти тему «Логарифмы» и все пройдет), но с точки зрения математики слово «сложная» не означает «трудная».

Представь себе маленький конвейер: сидят два человека и проделывают какие-то действия с какими-то предметами. Например, первый заворачивает шоколадку в обертку, а второй обвязывает ее ленточкой. Получается такой составной объект: шоколадка, обернутая и обвязанная ленточкой. Чтобы съесть шоколадку, тебе нужно проделать обратные действия в обратном порядке.

Давай создадим подобный математический конвейер: сперва будем находить косинус числа, а затем полученное число возводить в квадрат. Итак, нам дают число (шоколадка), я нахожу его косинус (обертка), а ты затем возводишь то, что у меня получилось, в квадрат (обвязываешь ленточкой). Что получилось? Функция. Это и есть пример сложной функции: когда для нахождения ее значения мы проделываем первое действие непосредственно с переменной, а потом еще второе действие с тем, что получилось в результате первого.

Другими словами, сложная функция - это функция, аргументом которой является другая функция : .

Для нашего примера, .

Мы вполне можем проделывать те же действия и в обратном порядке: сначала ты возводишь в квадрат, а я затем ищу косинус полученного числа: . Несложно догадаться, что результат будет почти всегда разный. Важная особенность сложных функций: при изменении порядка действий функция меняется.

Второй пример: (то же самое). .

Действие, которое делаем последним будем называть «внешней» функцией , а действие, совершаемое первым - соответственно «внутренней» функцией (это неформальные названия, я их употребляю только для того, чтобы объяснить материал простым языком).

Попробуй определить сам, какая функция является внешней, а какая внутренней:

Ответы: Разделение внутренней и внешней функций очень похоже на замену переменных: например, в функции

  1. Первым будем выполнять какое действие? Сперва посчитаем синус, а только потом возведем в куб. Значит, внутренняя функция, а внешняя.
    А исходная функция является их композицией: .
  2. Внутренняя: ; внешняя: .
    Проверка: .
  3. Внутренняя: ; внешняя: .
    Проверка: .
  4. Внутренняя: ; внешняя: .
    Проверка: .
  5. Внутренняя: ; внешняя: .
    Проверка: .

производим замену переменных и получаем функцию.

Ну что ж, теперь будем извлекать нашу шоколадку - искать производную. Порядок действий всегда обратный: сначала ищем производную внешней функции, затем умножаем результат на производную внутренней функции. Применительно к исходному примеру это выглядит так:

Другой пример:

Итак, сформулируем, наконец, официальное правило:

Алгоритм нахождения производной сложной функции:

Вроде бы всё просто, да?

Проверим на примерах:

Решения:

1) Внутренняя: ;

Внешняя: ;

2) Внутренняя: ;

(только не вздумай теперь сократить на! Из под косинуса ничего не выносится, помнишь?)

3) Внутренняя: ;

Внешняя: ;

Сразу видно, что здесь трёхуровневая сложная функция: ведь - это уже сама по себе сложная функция, а из нее еще извлекаем корень, то есть выполняем третье действие (шоколадку в обертке и с ленточкой кладем в портфель). Но пугаться нет причин: все-равно «распаковывать» эту функцию будем в том же порядке, что и обычно: с конца.

То есть сперва продифференцируем корень, затем косинус, и только потом выражение в скобках. А потом все это перемножим.

В таких случаях удобно пронумеровать действия. То есть, представим, что нам известен. В каком порядке будем совершать действия, чтобы вычислить значение этого выражения? Разберем на примере:

Чем позже совершается действие, тем более «внешней» будет соответствующая функция. Последовательность действий - как и раньше:

Здесь вложенность вообще 4-уровневая. Давай определим порядок действий.

1. Подкоренное выражение. .

2. Корень. .

3. Синус. .

4. Квадрат. .

5. Собираем все в кучу:

ПРОИЗВОДНАЯ. КОРОТКО О ГЛАВНОМ

Производная функции - отношение приращения функции к приращению аргумента при бесконечно малом приращении аргумента:

Базовые производные:

Правила дифференцирования:

Константа выносится за знак производной:

Производная суммы:

Производная произведения:

Производная частного:

Производная сложной функции:

Алгоритм нахождения производной от сложной функции:

  1. Определяем «внутреннюю» функцию, находим ее производную.
  2. Определяем «внешнюю» функцию, находим ее производную.
  3. Умножаем результаты первого и второго пунктов.

План:

1. Производная функции

2. Дифференциал функции

3. Приложение дифференциального исчисления к исследованию функции

Производная функции одной переменной

Пусть функция определена на некотором интервале . Аргументу дадим приращение : , тогда функция получит приращение . Найдем предел этого отношения при Если этот предел существует, то его называют производной функции . Производная функции имеет несколько обозначений: . Иногда в обозначении производной используется индекс , указывающий, по какой переменной взята производная.

Определение. Производной функции в точке называется предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю (если этот предел существует):

Определение. Функция , имеющая производную в каждой точке интервала , называется дифференцируемой в этом интервале.

Определение. Операция нахождения производной функции называется дифференцированием .

Значение производной функции в точке обозначается одним из символов: .

Пример. Найти производную функции в произвольной точке .

Решение . Значению даем приращение . Найдем приращение функции в точке : . Составим отношение . Перейдем к пределу: . Таким образом, .

Механический смысл производной . Так как или , т.е. скорость прямолинейного движения материальной точки в момент времени есть производная от пути по времени . В этом заключается механический смысл производной .

Если функция описывает какой-либо физический процесс, то производная есть скорость протекания этого процесса. В этом состоит физический смысл производной .

Геометрический смысл производной . Рассмотрим график непрерывной кривой , имеющий в точке невертикальную касательную. Найдем ее угловой коэффициент , где - угол касательной с осью . Для этого проведем через точку и графика секущую (рисунок 1).

Обозначим через - угол между секущей и осью . На рисунке видно, что угловой коэффициент секущей равен

При в силу непрерывности функции приращение тоже стремится к нулю; поэтому точка неограниченно приближается по кривой к точке , а секущая , поворачиваясь около точки , переходит в касательную. Угол , т.е. . Следовательно, , поэтому угловой коэффициент касательной равен .

Угловой коэффициент касательной к кривой

Это равенство перепишем в виде: , т.е. производная в точке равна угловому коэффициенту касательной к графику функции в точке, абсцисса которой равна . В этом заключается геометрический смысл производной .

Если точка касания имеет координаты (рисунок 2), угловой коэффициент касательной равен: .


Уравнение прямой проходящей через заданную точку в заданном направлении имеет вид: .

Тогда уравнение касательной записывается в виде: .

Определение. Прямая, перпендикулярная касательной в точке касания, называется нормалью к кривой .

Угловой коэффициент нормали равен: (так как нормаль перпендикулярна касательной).

Уравнение нормали имеет вид: , если .

Подставляя найденные значения и получаем уравнения касательной , т.е. .

Уравнение нормали: или .

Если функция имеет конечную производную в точке, то она дифференцируема в этой точке. Если функция дифференцируема в каждой точке интервала, то она дифференцируема в этом интервале.

Теорема 6.1 Если функция дифференцируема в некоторой точке, то она непрерывна в ней.

Обратная теорема неверна. Непрерывная функция может не иметь производной.

Пример. Функция непрерывна на интервале (рисунок 3).

Решение .

Производная этой функции равна:

В точке - функция не дифференцируема.

Замечание . На практике чаще всего приходится находить производные от сложных функций. Поэтому в таблице формул дифференцирования аргумент заменен на промежуточный аргумент .

Таблица производных

Постоянная величина

Степенная функция :

2) , в частности ;

Показательная функция :

3) , в частности ;

Логарифмическая функция :

4) , в частности, ;

Тригонометрические функции :

Обратные тригонометрические функции , , , :

Продифференцировать функцию это значит найти ее производную, то есть вычислить предел: . Однако определение предела в большинстве случаев представляет громоздкую задачу.

Если знать производные основных элементарных функций и знать правила дифференцирования результатов арифметических действий над этими функциями, то можно легко найти производные любых элементарных функций, согласно правил определения производных, хорошо известных из школьного курса.

Пусть функции и - две дифференцируемые в некотором интервале функции.

Теорема 6.2 Производная суммы (разности) двух функций равна сумме (разности) производных этих функций: .

Теорема справедлива для любого конечного числа слагаемых.

Пример. Найти производную функции .

Решение .

Теорема 6.3 Производная произведения двух функций равна произведению производной первого сомножителя на второй плюс произведение первого сомножителя на производную второго: .

Пример. Найти производную функции .

Решение .

Теорема 6.4 Производная частного двух функций , если равна дроби, числитель которой есть разность произведений знаменателя дроби на производную числителя и числителя дроби на производную знаменателя, а знаменатель есть квадрат прежнего знаменателя: .

Пример. Найти производную функции .

Решение . .

Для нахождения производной сложной функции надо производную данной функции по промежуточному аргументу умножить на производную промежуточного аргумента по независимому аргументу

Это правило остается в силе, если промежуточных аргументов несколько. Так, если , , , то

Пусть и, тогда - сложная функция с промежуточным аргументом и независимым аргументом .

Теорема 6.5 Если функция имеет производную в точке , а функция имеет производную в соответствующей точке , то сложная функция имеет производную в точке , которая находится по формуле . , Найти производную функции , заданную уравнением: .

Решение . Функция задана неявно. Продифференцируем уравнение по , помня, что : . Затем находим: .