Как извлечь степень. Корень степени n: основные определения. Извлечение корня из отрицательного числа

Для извлечения корня в Excel и возведения числа в степень используются встроенные функции и математические операторы. Рассмотрим на примерах.

Примеры функции КОРЕНЬ в Excel

Встроенная функция КОРЕНЬ возвращает положительное значение квадратного корня. В меню «Функции» она находится в категории «Математические».

Синтаксис функции: =КОРЕНЬ(число).

Единственный и обязательный аргумент представляет собой положительное число, для которого функция вычисляет квадратный корень. Если аргумент имеет отрицательное значение, Excel вернет ошибку #ЧИСЛО!.

В качестве аргумента можно указывать конкретное значение либо ссылку на ячейку с числовым значением.

Рассмотрим примеры.

Функция вернула квадратный корень числа 36. Аргумент – определенное значение.

Функция ABS возвращает абсолютное значение числа -36. Ее использование позволило избежать ошибки при извлечении квадратного корня из отрицательного числа.

Функция извлекла квадратный корень от суммы 13 и значения ячейки C1.



Функция возведения в степень в Excel

Синтаксис функции: =СТЕПЕНЬ(значение; число). Оба аргумента обязательные.

Значение – любое вещественное числовое значение. Число – показатель степени, в которую нужно возвести заданное значение.

Рассмотрим примеры.

В ячейке C2 – результат возведения числа 10 в квадрат.

Функция вернула число 100, возведенное к ¾.

Возведение к степени с помощью оператора

Для возведения числа к степени в Excel, можно воспользоваться математическим оператором «^». Для его введения нажать Shift + 6 (с английской раскладкой клавиатуры).

Чтобы Excel воспринимал вводимую информацию как формулу, сначала ставится знак «=». Далее водится цифра, которую нужно возвести в степень. А после значка «^» – значение степени.

Вместо любого значения данной математической формулы можно использовать ссылки на ячейки с цифрами.

Это удобно, если нужно возвести множество значений.

Скопировав формулу на весь столбец, быстро получили результаты возведения чисел в столбце A в третью степень.

Извлечение корней n-й степени

КОРЕНЬ – это функция квадратного корня в Excel. А как извлекать корень 3-й, 4-й и иной степеней?

Вспомним один из математических законов: чтобы извлечь корень n-й степени, необходимо возвести число в степень 1/n.

Например, чтобы извлечь кубический корень, возводим число в степень 1/3.

Воспользуемся формулой для извлечения корней разных степеней в Excel.

Формула вернула значение кубического корня из числа 21. Для возведения в дробную степень использовали оператор «^».

Часто преобразование и упрощение математических выражений требует перехода от корней к степеням и наоборот. Данная статья рассказывает о том, как осуществлять перевод корня в степень и обратно. Рассматривается теория, практические примеры и наиболее распространенные ошибки.

Переход от степеней с дробными показателями к корням

Допустим, мы имеем число с показателем степени в виде обыкновенной дроби - a m n . Как записать такое выражение в виде корня?

Ответ вытекает из самого определения степени!

Определение

Положительное число a в степени m n - это корень степени n из числа a m .

При этом, обязательно должно выполнятся условие:

a > 0 ; m ∈ ℤ ; n ∈ ℕ .

Дробная степень числа нуль определяется аналогично, однако в этом случае число m принимается не целым, а натуральным, чтобы не возникло деления на 0:

0 m n = 0 m n = 0 .

В соответствии с определением, степень a m n можно представить в виде корня a m n .

Например: 3 2 5 = 3 2 5 , 1 2 3 - 3 4 = 1 2 3 - 3 4 .

Однако, как уже было сказано, не следует забывать про условия: a > 0 ; m ∈ ℤ ; n ∈ ℕ .

Так, выражение - 8 1 3 нельзя представить в виде - 8 1 3 , так как запись - 8 1 3 попросту не имеет смысла - степень отрицательных чисел на определена.При этом, сам корень - 8 1 3 имеет смысл.

Переход от степеней с выражениями в основании и дробными показателями осуществляется аналогично на всей области допустимых значений (далее - ОДЗ) исходных выражений в основании степени.

Например, выражение x 2 + 2 x + 1 - 4 1 2 можно представить в виде квадратного корня x 2 + 2 x + 1 - 4 .Выражение в степени x 2 + x · y · z - z 3 - 7 3 переходит в выражение x 2 + x · y · z - z 3 - 7 3 для всех x , y , z из ОДЗ данного выражения.

Обратная замена корней степенями, когда вместо выражения с корнем записывается выражения со степенью, также возможна. Просто перевернем равенство из предыдущего пункта и получим:

Опять же, переход очевиден для положительных чисел a . Например, 7 6 4 = 7 6 4 , или 2 7 - 5 3 = 2 7 - 5 3 .

Для отрицательных a корни имеют смысл. Например - 4 2 6 , - 2 3 . Однако, представить эти корни в виде степеней - 4 2 6 и - 2 1 3 нельзя.

Можно ли вообще преобразовать такие выражения со степенями? Да, если произвести некоторые предварительные преобразования. Рассмотрим, какие.

Используя свойства степеней, можно выполнить преобразования выражения - 4 2 6 .

4 2 6 = - 1 2 · 4 2 6 = 4 2 6 .

Так как 4 > 0 , можно записать:

В случае с корнем нечетной степени из отрицательного числа, можно записать:

A 2 m + 1 = - a 2 m + 1 .

Тогда выражение - 2 3 примет вид:

2 3 = - 2 3 = - 2 1 3 .

Разберемся теперь, как корни, под которыми содержатся выражения, заменяются на степени, содержащие эти выражения в основании.

Обозначим буквой A некоторое выражение. Однако не будем спешить с представлением A m n в виде A m n . Поясним, что здесь имеется в виду. Например, выражение х - 3 2 3 , основываясь на равенстве из первого пункта, хочется представить в виде x - 3 2 3 . Такая замена возможна только при x - 3 ≥ 0 , а для остальных икс из ОДЗ она не подходит, так как для отрицательных a формула a m n = a m n не имеет смысла.

Таким образом, в рассмотренном примере преобразование вида A m n = A m n является преобразованием, сужающим ОДЗ, а из-за неаккуратного применения формулы A m n = A m n нередко возникают ошибки.

Чтобы правильно перейти от корня A m n к степени A m n , необходимо соблюдать несколько пунктов:

  • В случае, если число m - целое и нечетное, а n - натуральное и четное, то формула A m n = A m n справедлива на всей ОДЗ переменных.
  • Если m - целое и нечетное, а n - натуральное и нечетное,то выражение A m n можно заменить:
    - на A m n для всех значений переменных, при которых A ≥ 0 ;
    - на - - A m n для для всех значений переменных, при которых A < 0 ;
  • Если m - целое и четное, а n - любое натуральное число, то A m n можно заменить на A m n .

Сведем все эти правила в таблицу и приведем несколько примеров их использования.

Вернемся к выражению х - 3 2 3 . Здесь m = 2 - целое и четное число, а n = 3 - натуральное число. Значит, выражение х - 3 2 3 правильно будет записать в виде:

х - 3 2 3 = x - 3 2 3 .

Приведем еще один пример с корнями и степенями.

Пример. Перевод корня в степень

x + 5 - 3 5 = x + 5 - 3 5 , x > - 5 - - x - 5 - 3 5 , x < - 5

Обоснуем результаты, приведенные в таблице. Если число m - целое и нечетное, а n - натуральное и четное, для всех переменных из ОДЗ в выражении A m n значение A положительно или неотрицательно (при m > 0). Именно поэтому A m n = A m n .

Во втором варианте, когда m - целое, положительное и нечетное, а n - натуральное и нечетное, значения A m n разделяются. Для переменных из ОДЗ, при которых A неотрицательно, A m n = A m n = A m n . Для переменных, при которых A отрицательно, получаем A m n = - A m n = - 1 m · A m n = - A m n = - A m n = - A m n .

Аналогично рассмотрим и следующий случай, когда m - целое и четное, а n - любое натуральное число. Если значение A положительно или неотрицательно, то для таких значений переменных из ОДЗ A m n = A m n = A m n . Для отрицательных A получаем A m n = - A m n = - 1 m · A m n = A m n = A m n .

Таким образом, в третьем случае для всех переменных из ОДЗ можно записать A m n = A m n .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter


Преобразование выражений с корнями и степенями часто требует выполнения переходов от корней к степеням и обратно. В этой статье мы разберем, как такие переходы осуществляются, что лежит в их основе, и в каких моментах чаще всего возникают ошибки. Все это снабдим характерными примерами с детальным разбором решений.

Навигация по странице.

Переход от степеней с дробными показателями к корням

Возможность перехода от степени с дробным показателем к корню диктуется самим определением степени. Напомним, как определяется : степенью положительного числа a с дробным показателем m/n , где m – целое, а n – натуральное число, называют корень n-ой степени из a m , то есть, где a>0 , m∈Z , n∈N . Аналогично определяется и дробная степень нуля , с той лишь разницей, что в этом случае m уже считается не целым, а натуральным, чтобы не возникало деления на нуль.

Таким образом, степень всегда можно заменить на корень . Например, от можно перейти к , а степень можно заменить корнем . А вот переходить от выражения к корню не следует, так как степень изначально не имеет смысла (степень отрицательных чисел не определена), несмотря на то, что корень имеет смысл.

Как видите, в переходе от степеней чисел к корням нет абсолютно ничего мудреного. Аналогично осуществляется переход к корням от степеней с дробными показателями, в основании которых находятся произвольные выражения. Заметим, что указанный переход осуществляется на ОДЗ переменных для исходного выражения. К примеру, выражение на всей ОДЗ переменной x для этого выражения можно заменить корнем . А от степени перейти к корню , такая замена имеет место для любого набора переменных x , y и z из ОДЗ для исходного выражения.

Замена корней степенями

Возможна и обратная замена, то есть, замена корней на степени с дробными показателями . В ее основе также лежит равенство , которое в данном случае используется справа налево, то есть, в виде .

Для положительных a указанный переход очевиден. Например, можно заменить степенью , а от корня перейти к степени с дробным показателем вида .

А при отрицательных a равенство не имеет смысла, но корень при этом может иметь смысл. Например, корни и имеют смысл, но заменить их степенями и нельзя. Так можно ли их вообще преобразовать в выражения со степенями? Можно, если провести предварительные преобразования, заключающиеся в переходе к корням с неотрицательными числами под ними, которые потом и заменить степенями с дробными показателями. Покажем, в чем заключаются эти предварительные преобразования и как их провести.

В случае с корнем позволяют выполнить такие преобразования: . А так как 4 – положительное число, то последний корень можно заменить степенью . А во втором случае определение корня нечетной степени из отрицательного числа −a (при этом a – положительное), выражающееся равенством , позволяет корень заменить выражением , в котором кубический корень из двух уже можно заменить степенью, и оно примет вид .

Осталось разобрать, как заменяются корни, под которыми находятся выражения, на степени, содержащие эти выражения в основании. Здесь не стоит спешить с заменой на , буквой A мы обозначили некоторое выражение. Приведем пример, поясняющий, что под этим имеется в виду. Корень так и хочется заменить степенью , основываясь на равенстве . Но такая замена уместна лишь при условии x−3≥0 , а для остальных значений переменной x из ОДЗ (удовлетворяющих условию x−3<0 ) она не подходит, так как формула не имеет смысла для отрицательных a . Если обратить внимание на ОДЗ, то несложно заметить ее сужение при переходе от выражения к выражению , а помните, что мы договорились не прибегать к преобразованиям, сужающим ОДЗ.

Из-за такого неаккуратного применения формулы нередко возникают ошибки при переходе от корней к степеням. Например, в учебнике дано задание, представить выражение в виде степени с рациональным показателем, и приведен ответ , который вызывает вопросы, так как в условии не задано ограничение b>0 . А в учебнике присутствует переход от выражения , скорее всего через следующие преобразования иррационального выражения

к выражению . Последний переход также вызывает вопросы, так как сужает ОДЗ.

Возникает закономерный вопрос: «Как же правильно перейти от корня к степени для всех значений переменных из ОДЗ»? Такая замена проводится на базе следующих утверждений:


Прежде чем обосновать записанные результаты, приведем несколько примеров их использования для перехода от корней к степеням. Для начала вернемся к выражению . Его надо было заменять не на , а на (в данном случае m=2 – целое четное, n=3 – натуральное). Другой пример: .

Теперь обещанное обоснование результатов.

Когда m – целое нечетное, а n – натуральное четное, то для любого набора переменных из ОДЗ для выражения значение выражения A положительно (если m<0 ) или неотрицательно (если m>0 ). Поэтому, .

Переходим ко второму результату. Пусть m – целое положительное нечетное, а n – натуральное нечетное. Для всех значений переменных из ОДЗ, для которых значение выражения A неотрицательно, , а для которых отрицательно,

Аналогично доказывается следующий результат для целых отрицательных и нечетных m и натуральных нечетных n . Для всех значений переменных из ОДЗ, для которых значение выражения A положительно, , а для которых отрицательно,

Наконец, последний результат. Пусть m – целое четное, n – любое натуральное. Для всех значений переменных из ОДЗ, для которых значение выражения A положительно (если m<0 ) или неотрицательно (если m>0 ), . А для которых отрицательно, . Таким образом, если m – целое четное, n – любое натуральное, то для любого набора значений переменных из ОДЗ для выражения его можно заменить на .

Список литературы.

  1. Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  2. Алгебра и начала математического анализа. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / [Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. – М.: Просвещение, 2009.- 336 с.: ил.- ISBN 979-5-09-016551-8.

Формулы степеней используют в процессе сокращения и упрощения сложных выражений, в решении уравнений и неравенств.

Число c является n -ной степенью числа a когда:

Операции со степенями.

1. Умножая степени с одинаковым основанием их показатели складываются:

a m ·a n = a m + n .

2. В делении степеней с одинаковым основанием их показатели вычитаются:

3. Степень произведения 2-х либо большего числа множителей равняется произведению степеней этих сомножителей:

(abc…) n = a n · b n · c n …

4. Степень дроби равняется отношению степеней делимого и делителя:

(a/b) n = a n /b n .

5. Возводя степень в степень, показатели степеней перемножают:

(a m) n = a m n .

Каждая вышеприведенная формула верна в направлениях слева направо и наоборот.

Например . (2·3·5/15)² = 2²·3²·5²/15² = 900/225 = 4 .

Операции с корнями.

1. Корень из произведения нескольких сомножителей равняется произведению корней из этих сомножителей:

2. Корень из отношения равен отношению делимого и делителя корней:

3. При возведении корня в степень довольно возвести в эту степень подкоренное число:

4. Если увеличить степень корня в n раз и в тоже время возвести в n -ую степень подкоренное число, то значение корня не поменяется:

5. Если уменьшить степень корня в n раз и в тоже время извлечь корень n -ой степени из подкоренного числа, то значение корня не поменяется:

Степень с отрицательным показателем. Степень некоторого числа с неположительным (целым) показателем определяют как единицу, деленную на степень того же числа с показателем, равным абсолютной величине неположительного показателя:

Формулу a m :a n =a m - n можно использовать не только при m > n , но и при m < n .

Например . a 4:a 7 = a 4 - 7 = a -3 .

Чтобы формула a m :a n =a m - n стала справедливой при m=n , нужно присутствие нулевой степени.

Степень с нулевым показателем. Степень всякого числа, не равного нулю, с нулевым показателем равняется единице.

Например . 2 0 = 1,(-5) 0 = 1,(-3/5) 0 = 1.

Степень с дробным показателем. Чтобы возвести действительное число а в степень m/n , необходимо извлечь корень n -ой степени из m -ой степени этого числа а .