Прямоугольные числа пифагора. Пифагоровы тройки. Смотреть что такое "Пифагоровы числа" в других словарях

Обучающая : изучить ряд пифагоровых троек, разработать алгоритм их применения в различных ситуациях, составить памятку по их использованию.
  • Воспитательная : формирование сознательного отношения к учебе, развитие познавательной активности, культуры учебного труда.
  • Развивающая : развитие геометрической, алгебраической и числовой интуиции, сообразительности, наблюдательности, памяти.
  • Ход урока

    I. Организационный момент

    II. Объяснение нового материала

    Учитель: Загадка притягательной силы пифагоровых троек давно волнует человечество. Уникальные свойства пифагоровых троек объясняют их особую роль в природе, музыке, математике. Пифагорово заклинание, теорема Пифагора, остается в мозге миллионов, если не миллиардов, людей. Это – фундаментальная теорема, заучивать которую, заставляют каждого школьника. Несмотря на то, что теорема Пифагора доступна пониманию десятилетних, она является вдохновляющим началом проблемы, при решении которой потерпели фиаско величайшие умы в истории математики, теорема Ферма. Пифагор с острова Самос (см. Приложение 1 , слайд 4 )был одной из наиболее влиятельных и тем не менее загадочных фигур в математике. Поскольку достоверных сообщений о его жизни и работе не сохранилось, его жизнь оказалась окутанной мифами и легендами, и историкам бывает трудно отделить факты от вымысла. Не подлежит сомнению, однако, что Пифагор развил идею о логике чисел и что именно ему мы обязаны первым золотым веком математики. Благодаря его гению, числа перестали использоваться только для счета и вычислений и были впервые оценены по достоинству. Пифагор изучал свойства определенных классов чисел, соотношения между ними и фигуры, которые образуют числа. Пифагор понял, что числа существуют независимо от материального мира, и поэтому на изучении чисел не сказывается неточность наших органов чувств. Это означало, что Пифагор обрел возможность открывать истины, независимые от чьего-либо мнения или предрассудка. Истины более абсолютные, чем любое предыдущее знание. На основе изученной литературы, касающейся пифагоровых троек, нас будет интересовать возможность применения пифагоровых троек при решении задач тригонометрии. Поэтому мы поставим перед собой цель: изучить ряд пифагоровых троек, разработать алгоритм их применения, составить памятку по их использованию, провести исследование по их применению в различных ситуациях.

    Треугольник (слайд 14 ), стороны которого равны пифагоровым числам, является прямоугольным. Кроме того, любой такой треугольник является героновым, т.е. таким, у которого все стороны и площадь являются целочисленными. Простейший из них – египетский треугольник со сторонами (3, 4, 5).

    Составим ряд пифагоровых троек путем домножения чисел (3, 4, 5) на 2, на 3, на 4. Получим ряд пифагоровых троек, отсортируем их по возрастанию максимального числа, выделим примитивные.

    (3, 4, 5), (6, 8, 10), (5, 12, 13) , (9, 12, 13), (8, 15, 17) , (12, 16, 20), (15, 20, 25), (7, 24, 25) , (10, 24, 26), (20, 21, 29) , (18, 24, 30), (16, 30, 34), (21, 28, 35), (12, 35, 37), (15, 36, 39), (24, 32, 40), (9, 40, 41) , (14, 48, 50), (30, 40, 50).

    III. Ход урока

    1. Покрутимся вокруг задач:

    1) Используя соотношения между тригонометрическими функциями одного и того же аргумента найдите, если

    известно, что .

    2) Найдите значение тригонометрических функций угла?, если известно, что:

    3) Система тренировочных задач по теме “Формулы сложения”

    зная, что sin = 8/17, cos = 4/5, и – углы первой четверти, найдите значение выражения:

    зная, что и – углы второй четверти, sin = 4/5, cos = – 15/17, найдите: .

    4) Система тренировочных задач по теме “Формулы двойного угла”

    a) Пусть sin = 5/13, – угол второй четверти. Найдите sin2, cos2, tg2, ctg2.

    b) Известно, что tg? = 3/4, – угол третьей четверти. Найдите sin2, cos2, tg2, ctg2.

    c) Известно, что , 0 < < . Найдите sin, cos, tg, ctg.

    d) Известно, что , < < 2. Найдите sin, cos, tg.

    e) Найдите tg( + ), если известно что cos = 3/5, cos = 7/25, где и – углы первой четверти.

    f) Найдите , – угол третьей четверти.

    Решаем задачу традиционным способом с использованием основных тригонометрических тождеств, а затем решаем эти же задачи более рациональным способом. Для этого используем алгоритм решения задач с использованием пифагоровых троек. Составляем памятку решения задач с использованием пифагоровых троек. Для этого вспоминаем определение синуса, косинуса, тангенса и котангенса, острого угла прямоугольного треугольника, изображаем его, в зависимости от условий задачи на сторонах прямоугольного треугольника правильно расставляем пифагоровы тройки (рис. 1 ). Записываем соотношение и расставляем знаки. Алгоритм выработан.

    Рисунок 1

    Алгоритм решения задач

    Повторить (изучить) теоретический материал.

    Знать наизусть примитивные пифагоровы тройки и при необходимости уметь конструировать новые.

    Применять теорему Пифагора для точек с рациональными координатами.

    Знать определение синуса, косинуса, тангенса и котангенса острого угла прямоугольного треугольника, уметь изобразить прямоугольный треугольник и в зависимости от условия задачи правильно расставить пифагоровы тройки на сторонах треугольника.

    Знать знаки синуса, косинуса, тангенса и котангенса в зависимости от их расположения в координатной плоскости.

    Необходимые требования:

    1. знать, какие знаки синус, косинус, тангенс, котангенс имеют в каждой из четвертей координатной плоскости;
    2. знать определение синуса, косинуса, тангенса и котангенса острого угла прямоугольного треугольника;
    3. знать и уметь применять теорему Пифагора;
    4. знать основные тригонометрические тождества, формулы сложения, формулы двойного угла, формулы половинного аргумента;
    5. знать формулы приведения.

    С учетом вышеизложенного заполним таблицу (таблица 1 ). Ее нужно заполнять, следуя определению синуса, косинуса, тангенса и котангенса или с использованием теоремы Пифагора для точек с рациональными координатами. При этом постоянно необходимо помнить знаки синуса, косинуса, тангенса и котангенса в зависимости от их расположения в координатной плоскости.

    Таблица 1

    Тройки чисел sin cos tg ctg
    (3, 4, 5) I ч.
    (6, 8, 10) II ч. - -
    (5, 12, 13) III ч. - -
    (8, 15, 17) IV ч. - - -
    (9, 40, 41) I ч.

    Для успешной работы можно воспользоваться памяткой применения пифагоровых троек.

    Таблица 2

    (3, 4, 5), (6, 8, 10), (5, 12, 13) , (9, 12, 13), (8, 15, 17) , (12, 16, 20), (15, 20, 25), (7, 24, 25) , (10, 24, 26), (20, 21, 29) , (18, 24, 30), (16, 30, 34), (21, 28, 35), (12, 35, 37), (15, 36, 39), (24, 32, 40), (9, 40, 41) , (14, 48, 50), (30, 40, 50), …

    2. Решаем вместе .

    1) Задача: найдите cos, tg и ctg, если sin = 5/13, если – угол второй четверти.

    » заслуженного профессора математики Уорикского университета, известного популяризатора науки Иэна Стюарта, посвященной роли чисел в истории человечества и актуальности их изучения в наше время.

    Пифагорова гипотенуза

    Пифагоровы треугольники имеют прямой угол и целочисленные стороны. У простейшего из них самая длинная сторона имеет длину 5, остальные - 3 и 4. Всего существует 5 правильных многогранников. Уравнение пятой степени невозможно решить при помощи корней пятой степени - или любых других корней. Решетки на плоскости и в трехмерном пространстве не имеют пятилепестковой симметрии вращения, поэтому такие симметрии отсутствуют и в кристаллах. Однако они могут быть у решеток в четырехмерном пространстве и в занятных структурах, известных как квазикристаллы.

    Гипотенуза самой маленькой пифагоровой тройки

    Теорема Пифагора гласит, что самая длинная сторона прямоугольного треугольника (пресловутая гипотенуза) соотносится с двумя другими сторонами этого треугольника очень просто и красиво: квадрат гипотенузы равен сумме квадратов двух других сторон.

    Традиционно мы называем эту теорему именем Пифагора, но на самом деле история ее достаточно туманна. Глиняные таблички позволяют предположить, что древние вавилоняне знали теорему Пифагора задолго до самого Пифагора; славу первооткрывателя принес ему математический культ пифагорейцев, сторонники которого верили, что Вселенная основана на числовых закономерностях. Древние авторы приписывали пифагорейцам - а значит, и Пифагору - самые разные математические теоремы, но на самом деле мы представления не имеем о том, какой математикой занимался сам Пифагор. Мы даже не знаем, могли ли пифагорейцы доказать теорему Пифагора или просто верили в то, что она верна. Или, что наиболее вероятно, у них были убедительные данные о ее истинности, которых тем не менее не хватило бы на то, что мы считаем доказательством сегодня.

    Доказательства Пифагора

    Первое известное доказательство теоремы Пифагора мы находим в «Началах» Евклида. Это достаточно сложное доказательство с использованием чертежа, в котором викторианские школьники сразу узнали бы «пифагоровы штаны»; чертеж и правда напоминает сохнущие на веревке подштанники. Известны буквально сотни других доказательств, большинство из которых делает доказываемое утверждение более очевидным.


    // Рис. 33. Пифагоровы штаны

    Одно из простейших доказательств - это своего рода математический пазл. Возьмите любой прямоугольный треугольник, сделайте четыре его копии и соберите их внутри квадрата. При одной укладке мы видим квадрат на гипотенузе; при другой - квадраты на двух других сторонах треугольника. При этом ясно, что площади в том и другом случае равны.


    // Рис. 34. Слева: квадрат на гипотенузе (плюс четыре треугольника). Справа: сумма квадратов на двух других сторонах (плюс те же четыре треугольника). А теперь исключите треугольники

    Рассечение Перигаля - еще одно доказательство-пазл.


    // Рис. 35. Рассечение Перигаля

    Существует также доказательство теоремы с использованием укладки квадратов на плоскости. Возможно, именно так пифагорейцы или их неизвестные предшественники открыли эту теорему. Если взглянуть на то, как косой квадрат перекрывает два других квадрата, то можно увидеть, как разрезать большой квадрат на куски, а затем сложить из них два меньших квадрата. Можно увидеть также прямоугольные треугольники, стороны которых дают размеры трех задействованных квадратов.


    // Рис. 36. Доказательство мощением

    Есть интересные доказательства с использованием подобных треугольников в тригонометрии. Известно по крайней мере пятьдесят различных доказательств.

    Пифагоровы тройки

    В теории чисел теорема Пифагора стала источником плодотворной идеи: найти целочисленные решения алгебраических уравнений. Пифагорова тройка - это набор целых чисел a, b и c, таких что

    Геометрически такая тройка определяет прямоугольный треугольник с целочисленными сторонами.

    Самая маленькая гипотенуза пифагоровой тройки равна 5.

    Другие две стороны этого треугольника равны 3 и 4. Здесь

    32 + 42 = 9 + 16 = 25 = 52.

    Следующая по величине гипотенуза равна 10, потому что

    62 + 82 = 36 + 64 = 100 = 102.

    Однако это, по существу, тот же треугольник с удвоенными сторонами. Следующая по величине и по-настоящему другая гипотенуза равна 13, для нее

    52 + 122 = 25 + 144 = 169 = 132.

    Евклид знал, что существует бесконечное число различных вариантов пифагоровых троек, и дал то, что можно назвать формулой для нахождения их всех. Позже Диофант Александрийский предложил простой рецепт, в основном совпадающий с евклидовым.

    Возьмите любые два натуральных числа и вычислите:

    их удвоенное произведение;

    разность их квадратов;

    сумму их квадратов.

    Три получившихся числа будут сторонами пифагорова треугольника.

    Возьмем, к примеру, числа 2 и 1. Вычислим:

    удвоенное произведение: 2 × 2 × 1 = 4;

    разность квадратов: 22 - 12 = 3;

    сумма квадратов: 22 + 12 = 5,

    и мы получили знаменитый треугольник 3–4–5. Если взять вместо этого числа 3 и 2, получим:

    удвоенное произведение: 2 × 3 × 2 = 12;

    разность квадратов: 32 - 22 = 5;

    сумму квадратов: 32 + 22 = 13,

    и получаем следующий по известности треугольник 5 - 12 - 13. Попробуем взять числа 42 и 23 и получим:

    удвоенное произведение: 2 × 42 × 23 = 1932;

    разность квадратов: 422 - 232 = 1235;

    сумма квадратов: 422 + 232 = 2293,

    никто никогда не слышал о треугольнике 1235–1932–2293.

    Но эти числа тоже работают:

    12352 + 19322 = 1525225 + 3732624 = 5257849 = 22932.

    В диофантовом правиле есть еще одна особенность, на которую уже намекали: получив три числа, мы можем взять еще одно произвольное число и все их на него умножить. Таким образом треугольник 3–4–5 можно превратить в треугольник 6–8–10, умножив все стороны на 2, или в треугольник 15–20–25, умножив все на 5.

    Если перейти на язык алгебры, правило приобретает следующий вид: пусть u, v и k - натуральные числа. Тогда прямоугольный треугольник со сторонами

    2kuv и k (u2 - v2) имеет гипотенузу

    Существуют и другие способы изложения основной идеи, но все они сводятся к описанному выше. Этот метод позволяет получить все пифагоровы тройки.

    Правильные многогранники

    Существует ровным счетом пять правильных многогранников. Правильный многогранник (или полиэдр) - это объемная фигура с конечным числом плоских граней. Грани сходятся друг с другом на линиях, именуемых ребрами; ребра встречаются в точках, именуемых вершинами.

    Кульминацией евклидовых «Начал» является доказательство того, что может быть только пять правильных многогранников, то есть многогранников, у которых каждая грань представляет собой правильный многоугольник (равные стороны, равные углы), все грани идентичны и все вершины окружены равным числом одинаково расположенных граней. Вот пять правильных многогранников:

    тетраэдр с четырьмя треугольными гранями, четырьмя вершинами и шестью ребрами;

    куб, или гексаэдр, с 6 квадратными гранями, 8 вершинами и 12 ребрами;

    октаэдр с 8 треугольными гранями, 6 вершинами и 12 ребрами;

    додекаэдр с 12 пятиугольными гранями, 20 вершинами и 30 ребрами;

    икосаэдр с 20 треугольными гранями, 12 вершинами и 30 ребрами.


    // Рис. 37. Пять правильных многогранников

    Правильные многогранники можно найти и в природе. В 1904 г. Эрнст Геккель опубликовал рисунки крохотных организмов, известных как радиолярии; многие из них по форме напоминают те самые пять правильных многогранников. Возможно, правда, он немного подправил природу, и рисунки не отражают полностью форму конкретных живых существ. Первые три структуры наблюдаются также в кристаллах. Додекаэдра и икосаэдра в кристаллах вы не найдете, хотя неправильные додекаэдры и икосаэдры там иногда попадаются. Настоящие додекаэдры могут возникать в виде квазикристаллов, которые во всем похожи на кристаллы, за исключением того, что их атомы не образуют периодической решетки.


    // Рис. 38. Рисунки Геккеля: радиолярии в форме правильных многогранников


    // Рис. 39. Развертки правильных многогранников

    Бывает интересно делать модели правильных многогранников из бумаги, вырезав предварительно набор соединенных между собой граней - это называется разверткой многогранника; развертку складывают по ребрам и склеивают соответствующие ребра между собой. Полезно добавить к одному из ребер каждой такой пары дополнительную площадку для клея, как показано на рис. 39. Если такой площадки нет, можно использовать липкую ленту.

    Уравнение пятой степени

    Не существует алгебраической формулы для решения уравнений 5-й степени.

    В общем виде уравнение пятой степени выглядит так:

    ax5 + bx4 + cx3 + dx2 + ex + f = 0.

    Проблема в том, чтобы найти формулу для решений такого уравнения (у него может быть до пяти решений). Опыт обращения с квадратными и кубическими уравнениями, а также с уравнениями четвертой степени позволяет предположить, что такая формула должна существовать и для уравнений пятой степени, причем в ней, по идее, должны фигурировать корни пятой, третьей и второй степени. Опять же, можно смело предположить, что такая формула, если она существует, окажется очень и очень сложной.

    Это предположение в конечном итоге оказалось ошибочным. В самом деле, никакой такой формулы не существует; по крайней мере не существует формулы, состоящей из коэффициентов a, b, c, d, e и f, составленной с использованием сложения, вычитания, умножения и деления, а также извлечения корней. Таким образом, в числе 5 есть что-то совершенно особенное. Причины такого необычного поведения пятерки весьма глубоки, и потребовалось немало времени, чтобы в них разобраться.

    Первым признаком проблемы стало то, что, как бы математики ни старались отыскать такую формулу, какими бы умными они ни были, они неизменно терпели неудачу. Некоторое время все считали, что причины кроются в неимоверной сложности формулы. Считалось, что никто просто не может как следует разобраться в этой алгебре. Однако со временем некоторые математики начали сомневаться в том, что такая формула вообще существует, а в 1823 г. Нильс Хендрик Абель сумел доказать обратное. Такой формулы не существует. Вскоре после этого Эварист Галуа нашел способ определить, решаемо ли уравнение той или иной степени - 5-й, 6-й, 7-й, вообще любой - с использованием такого рода формулы.

    Вывод из всего этого прост: число 5 особенное. Можно решать алгебраические уравнения (при помощи корней n-й степени для различных значений n) для степеней 1, 2, 3 и 4, но не для 5-й степени. Здесь очевидная закономерность заканчивается.

    Никого не удивляет, что уравнения степеней больше 5 ведут себя еще хуже; в частности, с ними связана такая же трудность: нет общих формул для их решения. Это не означает, что уравнения не имеют решений; это не означает также, что невозможно найти очень точные численные значения этих решений. Все дело в ограниченности традиционных инструментов алгебры. Это напоминает невозможность трисекции угла при помощи линейки и циркуля. Ответ существует, но перечисленные методы недостаточны и не позволяют определить, каков он.

    Кристаллографическое ограничение

    Кристаллы в двух и трех измерениях не имеют 5-лучевой симметрии вращения.

    Атомы в кристалле образуют решетку, то есть структуру, которая периодически повторяется в нескольких независимых направлениях. К примеру, рисунок на обоях повторяется по длине рулона; кроме того, он обычно повторяется и в горизонтальном направлении, иногда со сдвигом от одного куска обоев к следующему. По существу, обои - это двумерный кристалл.

    Существует 17 разновидностей обойных рисунков на плоскости (см. главу 17). Они различаются по типам симметрии, то есть по способам сдвинуть жестко рисунок таким образом, чтобы он точно лег сам на себя в первоначальном положении. К типам симметрии относятся, в частности, различные варианты симметрии вращения, где рисунок следует повернуть на определенный угол вокруг определенной точки - центра симметрии.

    Порядок симметрии вращения - это то, сколько раз можно повернуть тело до полного круга так, чтобы все детали рисунка вернулись на первоначальные позиции. К примеру, поворот на 90° - это симметрия вращения 4-го порядка*. Список возможных типов симметрии вращения в кристаллической решетке вновь указывает на необычность числа 5: его там нет. Существуют варианты с симметрией вращения 2, 3, 4 и 6-го порядков, но ни один обойный рисунок не имеет симметрии вращения 5-го порядка. Симметрии вращения порядка больше 6 в кристаллах тоже не бывает, но первое нарушение последовательности происходит все же на числе 5.

    То же происходит с кристаллографическими системами в трехмерном пространстве. Здесь решетка повторяет себя по трем независимым направлениям. Существует 219 различных типов симметрии, или 230, если считать зеркальное отражение рисунка отдельным его вариантом - притом, что в данном случае нет зеркальной симметрии. Опять же, наблюдаются симметрии вращения порядков 2, 3, 4 и 6, но не 5. Этот факт получил название кристаллографического ограничения.

    В четырехмерном пространстве решетки с симметрией 5-го порядка существуют; вообще, для решеток достаточно высокой размерности возможен любой наперед заданный порядок симметрии вращения.


    // Рис. 40. Кристаллическая решетка поваренной соли. Темные шарики изображают атомы натрия, светлые - атомы хлора

    Квазикристаллы

    Хотя симметрия вращения 5-го порядка в двумерных и трехмерных решетках невозможна, она может существовать в чуть менее регулярных структурах, известных как квазикристаллы. Воспользовавшись набросками Кеплера, Роджер Пенроуз открыл плоские системы с более общим типом пятикратной симметрии. Они получили название квазикристаллов.

    Квазикристаллы существуют в природе. В 1984 г. Даниэль Шехтман открыл, что сплав алюминия и марганца может образовывать квазикристаллы; первоначально кристаллографы встретили его сообщение с некоторым скепсисом, но позже открытие было подтверждено, и в 2011 г. Шехтман был удостоен Нобелевской премии по химии. В 2009 г. команда ученых под руководством Луки Бинди обнаружила квазикристаллы в минерале с российского Корякского нагорья - соединении алюминия, меди и железа. Сегодня этот минерал называется икосаэдрит. Измерив при помощи масс-спектрометра содержание в минерале разных изотопов кислорода, ученые показали, что этот минерал возник не на Земле. Он сформировался около 4,5 млрд лет назад, в то время, когда Солнечная система только зарождалась, и провел большую часть времени в поясе астероидов, обращаясь вокруг Солнца, пока какое-то возмущение не изменило его орбиту и не привело его в конце концов на Землю.


    // Рис. 41. Слева: одна из двух квазикристаллических решеток с точной пятикратной симметрией. Справа: атомная модель икосаэдрического алюминиево-палладиево-марганцевого квазикристалла

    Пифагоровы тройки чисел

    Творческая работа

    ученика 8 ”A” класса

    МАОУ «Гимназия №1»

    Октябрьского района г. Саратова

    Панфилова Владимира

    Руководитель – учитель математики высшей категории

    Гришина Ирина Владимировна


    Содержание

    Введение……………………………………………………………………………………3

    Теоретическая часть работы

    Нахождение основного Пифагорова треугольника

    (формулы древних индусов)………………………………………………………………4

    Практическая часть работы

    Составление пифагоровых троек различными способами……………………........6

    Важное свойство пифагоровых треугольников……………………………………...8

    Заключение………………………………………………………………………………....9

    Литература….……………………………………………………………………………...10

    Введение

    В этом учебном году на уроках математики мы изучили одну из самых популярных теорем геометрии – теорему Пифагора. Теорема Пифагора применяется в геометрии на каждом шагу, она нашла широкое применение в практике и обыденной жизни. Но, кроме самой теоремы, мы изучили также и теорему, обратную к теореме Пифагора. В связи с изучением уже этой теоремы, у нас состоялось знакомство с пифагоровыми тройками чисел, т.е. с наборами из 3-х натуральных чисел a , b и c , для которых справедливо соотношение: = + . К таким наборам относят, например, следующие тройки:

    3,4,5; 5,12,13; 7,24,25; 8,15,17; 20,21,29; 9,40,41; 12,35,37

    У меня сразу возникли вопросы: а сколько пифагоровых троек можно придумать? А как их составлять?

    В нашем учебнике геометрии после изложения теоремы, обратной теореме Пифагора, было сделано важное замечание: можно доказать, что катеты а и b и гипотенуза с прямоугольных треугольников, длины сторон которых выражаются натуральными числами, можно находить по формулам:

    а = 2kmn b = k( - ) c = k( + , (1)

    где k , m , n – любые натуральные числа, причем m > n .

    Естественно, возникает вопрос – как доказать данные формулы? И только ли по этим формулам можно составлять пифагоровы тройки?

    В своей работе я осуществил попытку ответить на возникшие у меня вопросы.

    Теоретическая часть работы

    Нахождение основного Пифагорова треугольника (формулы древних индусов)

    Сначала докажем формулы (1):

    Обозначим длины катетов через х и у , а длину гипотенузы через z . По теореме Пифагора имеем равенство: + = .(2)

    Данное уравнение называют уравнением Пифагора. Исследование пифагоровых треугольников сводится к решению в натуральных числах уравнения (2).

    Если каждую сторону некоторого пифагорова треугольника увеличить в одно и то же число раз, то получим новый прямоугольный треугольник, подобный данному со сторонами, выраженными натуральными числами, т.е. снова пифагоров треугольник.

    Среди всех подобных треугольников существует наименьший, легко догадаться, что это будет треугольник, стороны которого х и у выражаются взаимно простыми числами

    (НОД ( х,у )=1).

    Такой пифагоров треугольник назовем основным .

    Отыскание основных пифагоровых треугольников.

    Пусть треугольник (x , y , z ) – основной пифагоров треугольник. Числа х и у – взаимно простые, и потому не могут быть оба четными. Докажем, что они не могут быть оба и нечетными. Для этого заметим, что квадрат нечетного числа при делении на 8 дает в остатке 1. В самом деле, любое нечетное натуральное число можно представить в виде 2 k -1 , где k принадлежит N .

    Отсюда: = -4 k +1 = 4 k ( k -1)+1.

    Числа ( k -1) и k – последовательные, одно из них обязательно четное. Тогда выражение k ( k -1) делится на 2 , 4 k ( k -1) делится на 8, а значит, число при делении на 8 дает в остатке 1.

    Сумма квадратов двух нечетных чисел дает при делении на 8 в остатке 2, следовательно, сумма квадратов двух нечетных чисел есть число четное, но не кратное 4, а потому это число не может быть квадратом натурального числа.

    Итак, равенство (2) не может иметь места, если x и у оба нечетны.

    Таким образом, если пифагоров треугольник (х, у, z ) - основной, то среди чисел х и у одно должно быть четным, а другое – нечетным. Пусть число у является четным. Числа х и z нечетны (нечетность z следует из равенства (2)).

    Из уравнения + = получаем, что = ( z + x )( z - x ) (3).

    Числа z + x и z - x как сумма и разность двух нечетных чисел – числа четные, а потому (4):

    z + x = 2 a , z - x = 2 b , где а и b принадлежат N .

    z + x =2 a , z - x = 2 b ,

    z = a+b , x = a - b. (5)

    Из этих равенств следует, что a и b – взаимно простые числа.

    Докажем это, рассуждая от противного.

    Пусть НОД ( a , b )= d , где d >1 .

    Тогда d z и x , а следовательно, и чисел z + x и z - x . Тогда на основании равенства (3) было бы делителем числа . В таком случае d был бы общим делителем чисел у и х , но числа у и х должны быть взаимно простыми.

    Число у , как известно, четное, поэтому у = 2с , где с – натуральное число. Равенство (3) на основании равенства (4) принимает следующий вид: =2а*2 b , или =ab.

    Из арифметики известно, что если произведение двух взаимно простых чисел является квадратом натурального числа, то каждое из этих чисел также является квадратом натурального числа.

    Значит, а = и b = , где m и n – взаимно простые числа, т.к. они являются делителями взаимно простых чисел а и b .

    На основании равенства (5) имеем:

    z = + , x = - , = ab = * = ; с = mn

    Тогда у = 2 mn .

    Числа m и n , т.к. являются взаимно простыми, не могут быть одновременно четными. Но и нечетными одновременно быть не могут, т.к. в этом случае х = - было бы четным, что невозможно. Итак, одно из чисел, m или n четно, а другое нечетно. Очевидно, у = 2 mn делится на 4. Следовательно, в каждом основном пифагоровом треугольнике хотя бы один из катетов делится на 4. Отсюда следует, что нет пифагоровых треугольников, все стороны которого были бы простыми числами.

    Полученные результаты можно выразить в виде следующей теоремы:

    Все основные треугольники, в которых у является четным числом, получаются из формулы

    х = - , y =2 mn , z = + ( m > n ), где m и n – все пары взаимно простых чисел, из которых одно является четным, а другое нечетным (безразлично, какое). Каждая основная пифагорова тройка (х, у, z ), где у – четное,- определяется этим способом однозначно.

    Числа m и n не могут быть оба четными или оба нечетными, т.к. в этих случаях

    х = были бы четными, что невозможно. Итак, одно из чисел m или n четно, а другое нечетно (y = 2 mn делится на 4).

    Практическая часть работы

    Составление пифагоровых троек различными способами

    В формулах индусов m и n – взаимно простые, но могут быть числами произвольной четности и составлять пифагоровы тройки по ним достаточно тяжело. Поэтому попробуем найти другой подход к составлению пифагоровых троек.

    = - = ( z - y )( z + y ), где х – нечетное, y – четное, z – нечетное

    v = z - y , u = z + y

    = uv , где u – нечетное, v – нечетное (взаимно простые)

    Т.к. произведение двух нечетных взаимно простых чисел является квадратом натурального числа, то u = , v = , где k и l – взаимно простые, нечетные числа.

    z - y = z + y = k 2 , откуда, складывая равенства и вычитая из одного другое, получаем:

    2 z = + 2 y = - то есть

    z = y = x = kl

    k

    l

    x

    y

    z

    37

    9

    1

    9

    40

    41 (s нулей )*(100…0 (s нулей ) +1)+1 =200…0 (s-1 нулей ) 200…0 (s-1 нулей ) 1

    Важное свойство пифагоровых треугольников

    Теорема

    В основном пифагоровом треугольнике один из катетов обязательно делится на 4, один из катетов обязательно делится на 3 и площадь пифагорова треугольника обязательно кратна 6.

    Доказательство

    Как нам известно, во всяком пифагоровом треугольнике хотя бы один из катетов делится на 4.

    Докажем, что один из катетов делится и на 3.

    Для доказательства предположим, что в пифагоровом треугольнике (x , y , z x или y кратно 3.

    Теперь докажем, что площадь пифагорова треугольника делится на 6.

    Всякий пифагоров треугольник имеет площадь, выражаемую натуральным числом, кратным 6. Это следует из того, что хотя бы один из катетов делится на 3 и хотя бы один из катетов делится на 4. Площадь треугольника, определяемая полупроизведением катетов, должна выражаться числом, кратным 6.

    Заключение

    В работе

    - доказаны формулы древних индусов

    -проведено исследование на количество пифагоровых троек (их бесконечно много)

    -указаны способы нахождения пифагоровых троек

    -изучены некоторые свойства пифагоровых треугольников

    Для меня это была очень интересная тема и находить ответы на мои вопросы стало очень интересным занятием. В дальнейшем я планирую рассмотреть связь пифагоровых троек с последовательностью Фибоначчи и теоремой Ферма и узнать еще много свойств пифагоровых треугольников.

    Литература

      Л.С. Атанасян “Геометрия.7-9 классы” М.: Просвещение, 2012.

      В. Серпинский “Пифагоровы треугольники” М.:Учпедгиз, 1959.

    Саратов

    2014

    Важный пример диофантова уравнения дает теорема Пифагора, связывающая длины x и y катетов прямоугольного треугольника с длиной z его гипотенузы:


    Вы, конечно, встречали одно из замечательных решений этого уравнения в натуральных числах, а именно пифагорову тройку чисел x = 3, y = 4, z = 5. Есть ли еще такие тройки?

    Оказывается пифагоровых троек бесконечно много и все они давным-давно найдены. Они могут быть получены по известным формулам, о которых вы узнаете из настоящего параграфа.

    Если диофантовы уравнения первой и второй степени уже решены, то вопрос о решении уравнений более высоких степеней до сих пор остается открытым, несмотря на усилия крупнейших математиков. В настоящее время, например, еще окончательно не доказана и не опровергнута знаменитая гипотеза Ферма о том, что при любом целом значении n&362;2 уравнение


    в целых числах не имеет решений.

    Для решения некоторых типов диофантовых уравнений полезную роль могут сыграть так называемые комплексные числа. Что это такое? Пусть буквой i обозначен некий объект, удовлетворяющий условию i 2 = -1 (понятно, что ни одно действительное число этому условию не удовлетворяет). Рассмотрим выражения вида α + iβ, где α и β - действительные числа. Такие выражения будем называть комплексными числами, определив над ними операции сложения и умножения, как и над двучленами, но с той лишь разницей, что выражение i 2 всюду будем заменять числом -1:

    7.1. Из одной тройки много

    Докажите, что если x 0 , y 0 , z 0 - пифагорова тройка, то тройки y 0 , x 0 , z 0 и x 0 k, y 0 k, z 0 k при любом значении натурального параметра k также являются пифагоровыми.

    7.2. Частные формулы

    Проверьте, что при любых натуральных значениях m>n тройка вида

    является пифагоровой. Всякую ли пифагорову тройку x, y, z можно представить в таком виде, если разрешить переставлять местами числа x и y в тройке?

    7.3. Несократимые тройки

    Пифагорову тройку чисел, не имеющих общего делителя, большего 1, будем называть несократимой. Докажите, что пифагорова тройка является несократимой только в случае, если любые два из чисел тройки являются взаимно простыми.

    7.4. Свойство несократимых троек

    Докажите, что в любой несократимой пифагоровой тройке x, y, z число z и ровно одно из чисел x или y являются нечетными.

    7.5. Все несократимые тройки

    Докажите, что тройка чисел x, y, z является несократимой пифагоровой тройкой тогда и только тогда, когда она с точностью до порядка первых двух чисел совпадает с тройкой 2mn, m 2 - n 2 , m 2 + n 2 , где m>n - взаимно простые натуральные числа разной четности.

    7.6. Общие формулы

    Докажите, что все решения уравнения


    в натуральных числах задаются с точностью до порядка неизвестных x и y формулами

    где m>n и k - натуральные параметры (чтобы исключить дублирование каких-либо троек, достаточно выбирать числа тип взаимно простыми и к тому же разной четности).

    7.7. Первые 10 троек

    Найдите все пифагоровы тройки x, y, z, удовлетворяющие условию x

    7.8. Свойства пифагоровых троек

    Докажите, что для любой пифагоровой тройки x, y, z справедливы утверждения:

    а) хотя бы одно из чисел x или y кратно 3;

    б) хотя бы одно из чисел x или y кратно 4;

    в) хотя бы одно из чисел x, y или z кратно 5.

    7.9. Применение комплексных чисел

    Модулем комплексного числа α + iβ называется неотрицательное число

    Проверьте, что для любых комплексных чисел α + iβ и γ + iδ выполняется свойство

    Пользуясь свойствами комплексных чисел и их модулей, докажите, что любые два целых числа m и n удовлетворяют равенству

    т. е. задают решение уравнения


    целых числах (сравните с задачей 7.5).

    7.10. Непифагоровы тройки

    Пользуясь свойствами комплексных чисел и их модулей (см. задачу 7.9), найдите формулы для каких-либо целочисленных решений уравнения:

    а) x 2 + y 2 = z 3 ; б) x 2 + y 2 = z 4 .

    Решения


    7.1. Если x 0 2 + y 0 2 = z 0 2 , то y 0 2 + x 0 2 = z 0 2 , и при любом натуральном значении k имеем

    что и требовалось доказать.

    7.2. Из равенств

    заключаем, что указанная в задаче тройка удовлетворяет уравнению x 2 + y 2 = z 2 в натуральных числах. Однако не всякую пифагорову тройку x, y, z можно представить в таком виде; например, тройка 9, 12, 15 является пифагоровой, но число 15 не представимо в виде суммы квадратов каких-либо двух натуральных чисел m и n.

    7.3. Если какие-то два числа из пифагоровой тройки x, y, z имеют общий делитель d, то он будет делителем и третьего числа (так, в случае x = x 1 d, y = y 1 d имеем z 2 = x 2 + y 2 = (x 1 2 + y 1 2)d 2 , откуда z 2 делится на d 2 и z делится на d). Поэтому для несократимости пифагоровой тройки необходимо, чтобы любые два из чисел тройки были взаимно простыми,

    7.4. Заметим, что одно из чисел x или y, скажем x, несократимой пифагоровой тройки x, y, z является нечетным, так как в противном случае числа x и y не были бы взаимно простыми (см. задачу 7.3). Если при этом другое число y также нечетно, то оба числа

    дают остаток 1 при делении на 4, а число z 2 = x 2 + y 2 дает при делении на 4 остаток 2, т. е. оно делится на 2, но не делится на 4, чего не может быть. Таким образом, число y должно быть четным, а число z, стало быть, нечетным.

    7.5. Пусть пифагорова тройка x, y, z несократима и, для определенности, число x четно, а числа y, z нечетны (см. задачу 7.4). Тогда

    где числа являются целыми. Докажем, что числа а и b взаимно просты. В самом деле, если бы они имели общий делитель, больший 1, то такой же делитель имели бы и числа z = a + b, y = a - b, т. е. тройка не была бы несократимой (см. задачу 7.3). Теперь, раскладывая числа а и b в произведения простых множителей, замечаем, что любой простой множитель должен входить в произведение 4ab = x 2 только в четной степени, причем если он входит в разложение числа а, то не входит в разложение числа b и наоборот. Поэтому любой простой множитель входит в разложение числа а или b в отдельности только в четной степени, а, значит, сами эти числа являются квадратами целых чисел. Положим тогда получим равенства

    причем натуральные параметры m>n взаимно просты (вследствие взаимной простоты чисел а и b) и имеют разную четность (из-за нечетности числа z = m 2 + n 2 ).

    Пусть теперь натуральные числа m>n разной четности являются взаимно простыми. Тогда тройка х = 2mn, y = m 2 - n 2 , z = m 2 + n 2 , согласно утверждению задачи 7.2, является пифагоровой. Докажем, что она несократима. Для этого достаточно проверить, что числа y и z не имеют общих делителей (см. задачу 7.3). В самом деле, оба эти числа нечетны, так как числа тип имеют разную четность. Если же числа y и z имеют какой-либо простой общий делитель (тогда уж обязательно нечетный), то такой же делитель имеет и каждое из чисел и а с ними и каждое из чисел m и n, что противоречит их взаимной простоте.

    7.6. В силу утверждений, сформулированных в задачах 7.1, 7.2, указанные формулы задают только пифагоровы тройки. С другой стороны, любая пифагорова тройка x, y, z после ее сокращения на наибольший общий делитель k пары чисел x и y становится несократимой (см. задачу 7.3) и, следовательно, может быть представлена с точностью до порядка чисел x и y в виде, описанном в задаче 7.5. Поэтому любая пифагорова тройка задается указанными формулами при некоторых значениях параметров.

    7.7. Из неравенства z и формул задачи 7.6 получаем оценку m 2 т. е. m≤5 . Полагая m = 2, n = 1 и k = 1, 2, 3, 4, 5, получаем тройки 3, 4, 5; 6, 8, 10; 9, 12, 15; 12,16,20; 15, 20, 25. Полагая m = 3, n = 2 и k = 1, 2, получаем тройки 5, 12, 13; 10, 24, 26. Полагая m = 4, n = 1, 3 и k = 1, получаем тройки 8, 15, 17; 7, 24, 25. Наконец, полагая m = 5, n = 2 и k = 1, получаем тройку 20, 21, 29.

    Свойства

    Поскольку уравнение x 2 + y 2 = z 2 однородно , при домножении x , y и z на одно и то же число получится другая пифагорова тройка. Пифагорова тройка называется примитивной , если она не может быть получена таким способом, то есть - взаимно простые числа .

    Примеры

    Некоторые пифагоровы тройки (отсортированы по возрастанию максимального числа, выделены примитивные):

    (3, 4, 5), (6, 8, 10), (5, 12, 13), (9, 12, 15), (8, 15, 17), (12, 16, 20), (15, 20, 25), (7, 24, 25), (10, 24, 26), (20, 21, 29), (18, 24, 30), (16, 30, 34), (21, 28, 35), (12, 35, 37), (15, 36, 39), (24, 32, 40), (9, 40, 41), (14, 48, 50), (30, 40, 50)…

    История

    Пифагоровы тройки известны очень давно. В архитектуре древнемесопотамских надгробий встречается равнобедренный треугольник, составленный из двух прямоугольных со сторонами 9, 12 и 15 локтей. Пирамиды фараона Снофру (XXVII век до н. э.) построены с использованием треугольников со сторонами 20, 21 и 29, а также 18, 24 и 30 десятков египетских локтей.

    X Всероссийский симпозиум по прикладной и промышленной математике. Санкт - Петербург, 19 мая 2009г.

    Доклад: Алгоритм решения Диофантовых уравнений.

    В работе рассмотрен метод исследования Диофантовых уравнений и представлены решенные этим методом: - великая теорема Ферма; - поиск Пифагоровых троек и тд. http://referats.protoplex.ru/referats_show/6954.html

    Ссылки

    • Е. А. Горин Степени простых чисел в составе пифагоровых троек // Математическое просвещение . - 2008. - В. 12. - С. 105-125.

    Wikimedia Foundation . 2010 .

    Смотреть что такое "Пифагоровы тройки" в других словарях:

      В математике пифагоровыми числами (пифагоровой тройкой) называется кортеж из трёх целых чисел удовлетворяющих соотношению Пифагора: x2 + y2 = z2. Содержание 1 Свойства … Википедия

      Тройки таких натуральных чисел, что треугольник, длины сторон которого пропорциональны (или равны) этим числам, является прямоугольным, напр. тройка чисел: 3, 4, 5 … Большой Энциклопедический словарь

      Тройки натуральных чисел таких, что треугольник, длины сторон которого пропорциональны (или равны) этим числам, является прямоугольным. По теореме, обратной теореме Пифагора (см. Пифагора теорема), для этого достаточно, чтобы они… … Большая советская энциклопедия

      Тройки целых положительных чисел х, у,z, удовлетворяющих уравнению x2+у 2=z2. Все решения этого уравнения, а следовательно, и все П. ч. выражаются формулами х=а 2 b2, y=2ab, z=a2+b2, где а, b произвольные целые положительные числа (а>b). П. ч … Математическая энциклопедия

      Тройки таких натуральных чисел, что треугольник, длины сторон к рого пропорциональны (или равны) этим числам, является прямоугольным, напр. тройка чисел: 3, 4, 5 … Естествознание. Энциклопедический словарь

      Тройки таких натуральных чисел, что треугольник, длины сторон которого пропорциональны (или равны) этим числам, является прямоугольным, например тройка чисел: 3, 4, 5. * * * ПИФАГОРОВЫ ЧИСЛА ПИФАГОРОВЫ ЧИСЛА, тройки таких натуральных чисел, что… … Энциклопедический словарь

      В математике пифагоровой тройкой называется кортеж из трёх натуральных чисел удовлетворяющих соотношению Пифагора: При этом числа, образующие пифагорову тройку, называются пифагоровыми числами. Содержание 1 Примитивные тройки … Википедия

      Теорема Пифагора одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Содержание 1 … Википедия

      Теорема Пифагора одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Содержание 1 Формулировки 2 Доказательства … Википедия

      Это уравнение вида где P целочисленная функция (например, полином с целыми коэффициентами), а переменные принимают целые значения. Названы в честь древнегреческого математика Диофанта. Содержание 1 Примеры … Википедия