Разные способы доказательства теоремы Пифагора: примеры, описание и отзывы. Пифагоровы штаны Штаны во все стороны равны

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

МБОУ Бондарская СОШ Ученический проект на тему: «Пифагор и его теорема» Подготовил: Эктов Константин, ученик 7 А класса Руководитель: Долотова Надежда Ивановна, учитель математики 2015 г.

2 слайд

Описание слайда:

3 слайд

Описание слайда:

Аннотация. Геометрия – очень интересная наука. Она содержит множество не похожих друг на друга теорем, но порой так необходимых. Я очень заинтересовался теоремой Пифагора. К сожалению, одно из самых главных утверждений мы проходим лишь в восьмом классе. Я решил приоткрыть завесу тайны и исследовать теорему Пифагора.

4 слайд

Описание слайда:

5 слайд

Описание слайда:

6 слайд

Описание слайда:

Задачи Изучить биографию Пифагора. Исследовать историю возникновения и доказательства теоремы. Выяснить, как теорема используется в искусстве. Найти исторические задачи, в решении которых применяется теорема Пифагора. Познакомиться с отношением детей разных времен к данной теореме. Создать проект.

7 слайд

Описание слайда:

Ход исследования Биография Пифагора. Заповеди и афоризмы Пифагора. Теорема Пифагора. История теоремы. Почему «пифагоровы штаны во все стороны равны»? Различные доказательства теоремы Пифагора другими учеными. Применение теоремы Пифагора. Опрос. Вывод.

8 слайд

Описание слайда:

Пифагор – кто же он такой? Пифагор Самосский (580 - 500 до н. э.) древнегреческий математик и философ-идеалист. Родился на острове Самос. Получил хорошее образование. По преданию Пифагор, чтобы ознакомиться с мудростью восточных ученых, выехал в Египет и прожил там 22 года. Хорошо овладев всеми науками египтян, в том числе и математикой, он переехал в Вавилон, где прожил 12 лет и ознакомился с научными знаниями вавилонских жрецов. Предания приписывают Пифагору посещение и Индии. Это очень вероятно, так как Иония и Индия тогда имели торговые связи. Возвратившись на родину (ок. 530 г. до н. э.), Пифагор попытался организовать свою философскую школу. Однако по неизвестным причинам он вскоре оставляет Самос и селится в Кротоне (греческой колонии на севере Италии). Здесь Пифагору удалось организовать свою школу, которая действовала почти тридцать лет. Школа Пифагора, или, как ее еще называют, пифагорейский союз, была одновременно и философской школой, и политической партией, и религиозным братством. Статус пифагорейского союза был очень суровым. По своим философским взглядам Пифагор был идеалистом, защитником интересов рабовладельческой аристократии. Возможно, в этом и заключалась причина его отъезда из Самоса, так как в Ионии очень большое влияние имели сторонники демократических взглядов. В общественных вопросах под "порядком" пифагорейцы понимали господство аристократов. Древнегреческую демократию они осуждали. Пифагорейская философия была примитивной попыткой обосновать господство рабовладельческой аристократии. В конце V в. до н. э. в Греции и ее колониях прокатилась волна демократического движения. Победила демократия в Кротоне. Пифагор вместе с учениками оставляет Кротон и уезжает в Тарент, а затем в Метапонт. Прибытие пифагорейцев в Метапонт совпало со вспышкой там народного восстания. В одной из ночных стычек погиб почти девяностолетний Пифагор. Его школа прекратила свое существование. Ученики Пифагора, спасаясь от преследований, расселились по всей Греции и ее колониям. Добывая себе средства к существованию, они организовывали школы, в которых преподавали главным образом арифметику и геометрию. Сведения об их достижениях содержатся в сочинениях позднейших учёных - Платона, Аристотеля и др.

9 слайд

Описание слайда:

Заповеди и афоризмы Пифагора Мысль - превыше всего между людьми на земле. Не садись на хлебную меру (т. е. не живи праздно). Уходя, не оглядывайся (т. е. перед смертью не цепляйся за жизнь). По торной дороге не ходи (т. е. следуй не мнениям толпы, а мнениям немногих понимающих). Ласточек в доме не держи (т. е. не принимай гостей болтливых и не сдержанных на язык). Будь с тем, кто ношу взваливает, не будь с тем, кто ношу сваливает (т. е. поощряй людей не к праздности, а к добродетели, к труду). На поле жизни, подобно сеятелю, ходи ровным и постоянным шагом. Истинное отечество там, где есть благие нравы. Не будь членом учёного общества: самые мудрые, составляя общество, делаются простолюдинами. Почитай священными числа, вес и меру, как чад изящного равенства. Измеряй свои желания, взвешивай свои мысли, исчисляй свои слова. Ничему не удивляйся: удивление произвело богов.

10 слайд

Описание слайда:

Формулировка теоремы. В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

11 слайд

Описание слайда:

Доказательства теоремы. На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы. Вероятно, теорема Пифагора является единственной теоремой со столь внушительным числом доказательств. Разумеется, все их можно разбить на малое число классов. Самые известные из них: доказательства методом площадей, аксиоматические и экзотические доказательства.

12 слайд

Описание слайда:

Теорема Пифагора Доказательство Дан прямоугольный треугольник с катетами a, b и гипотенузой c. Докажем, что c² = a² + b² Достроим треугольник до квадрата со стороной a + b. Площадь S этого квадрата равна (a + b)². С другой стороны, квадрат составлен из четырех равных прямоугольных треугольников, S каждого из которых равна ½ a b, и квадрата со стороной c. S = 4 · ½ a b + c² = 2 a b + c² Таким образом, (a + b)² = 2 a b + c², откуда c² = a² + b² c c c c с а b

13 слайд

Описание слайда:

История теоремы Пифагора Интересна история теоремы Пифагора. Хотя эта теорема и связывается с именем Пифагора, она была известна задолго до него. В вавилонских текстах эта теорема встречается за 1200 лет до Пифагора. Возможно, что тогда еще не знали ее доказательства, а само соотношение между гипотенузой и катетами было установлено опытным путем на основе измерений. Пифагор, по-видимому, нашел доказательство этого соотношения. Сохранилось древнее предание, что в честь своего открытия Пифагор принес в жертву богам быка, а по другим свидетельствам – даже сто быков. На протяжении последующих веков были найдены различные другие доказательства теоремы Пифагора. В настоящее время их насчитывается более ста, но наиболее популярна теорема с построением квадрата с помощью данного прямоугольного треугольника.

14 слайд

Описание слайда:

Теорема в Древнем Китае "Если прямой угол разложить на составные части, то линия, соединяющая концы его сторон, будет 5, когда основание есть 3, а высота 4".

15 слайд

Описание слайда:

Теорема в Древнем Египте Кантор (крупнейший немецкий историк математики) считает, что равенство 3 ² + 4 ² = 5² было известно уже египтянам еще около 2300 г. до н. э., во времена царя Аменемхета(согласно папирусу 6619 Берлинского музея). По мнению Кантора гарпедонапты, или "натягиватели веревок", строили прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5.

16 слайд

Описание слайда:

О теореме в Вавилонии «Заслугой первых греческих математиков, таких как Фалес, Пифагор и пифагорейцы, является не открытие математики, но ее систематизация и обоснование. В их руках вычислительные рецепты, основанные на смутных представлениях, превратились в точную науку."

17 слайд

Описание слайда:

Почему «пифагоровы штаны во все стороны равны»? В течение двух тысячелетий наиболее распространенным доказательством теоремы Пифагора было придуманное Евклидом. Оно помещено в его знаменитой книге «Начала». Евклид опускал высоту СН из вершины прямого угла на гипотенузу и доказывал, что её продолжение делит достроенный на гипотенузе квадрат на два прямоугольника, площади которых равны площадям соответствующих квадратов, построенных на катетах. Чертёж, применяемый при доказательстве этой теоремы, в шутку называют «пифагоровы штаны». В течение долгого времени он считался одним из символов математической науки.

18 слайд

Описание слайда:

Отношение детей древности к Доказательство теоремы Пифагора учащиеся средних веков считали очень трудным. Слабые ученики, заучившие теоремы наизусть, без понимания, и прозванные поэтому «ослами», были не в состоянии преодолеть теорему Пифагора, служившую для них вроде непреодолимого моста. Из-за чертежей, сопровождающих теорему Пифагора, учащиеся называли ее также «ветряной мельницей», составляли стихи, вроде «Пифагоровы штаны на все стороны равны», рисовали карикатуры.

19 слайд

Описание слайда:

Доказательства теоремы Простейшее доказательство теоремы получается в случае равнобедренного прямоугольного треугольника. В самом деле, достаточно просто посмотреть на мозаику равнобедренных прямоугольных треугольников, чтобы убедиться в справедливости теоремы. Например, для треугольника ABC: квадрат, построенный на гипотенузе АС, содержит 4 исходных треугольника, а квадраты, построенные на катетах,- по два.

20 слайд

Описание слайда:

« Стул невесты » На рисунке квадраты, построенные на катетах, размещены ступенями один рядом с другим. Эту фигуру, которая встречается в доказательствах, датируемых не позднее, чем 9 столетием н. э., индусы называли "стулом невесты".

21 слайд

Описание слайда:

Применение теоремы Пифагора В настоящее время всеобщее признание получило то, что успех развития многих областей науки и техники зависит от развития различных направлений математики. Важным условием повышения эффективности производства является широкое внедрение математических методов в технику и народное хозяйство, что предполагает создание новых, эффективных методов качественного и количественного исследования, которые позволяют решать задачи, выдвигаемые практикой.

22 слайд

Описание слайда:

Применение теоремы в строительстве В зданиях готического и романского стиля верхние части окон расчленяются каменными ребрами, которые не только играют роль орнамента, но и способствуют прочности окон.

23 слайд

Описание слайда:

24 слайд

Описание слайда:

Исторические задачи Для крепления мачты нужно установить 4 троса. Один конец каждого троса должен крепиться на высоте 12 м, другой на земле на расстоянии 5 м от мачты. Хватит ли 50 м троса для крепления мачты?

Некоторые дискуссии меня развлекают безмерно...

Привет, что делаешь?
-Да вот, задачки решаю из журнала.
-Ну ты даёшь! Не ожидал от тебя.
-Чего не ожидал?
-Что ты опустишься до задачек. Вроде умный ведь, а веришь во всякую ерунду.
-Извини, не понимаю. Что ты называешь ерундой?
-Да всю эту вашу математику. Ведь очевидно же, что фигня полная.
-Как ты можешь так говорить? Математика - царица наук...
-Вот только давай без этого пафоса, да? Математика - вообще не наука, а одно сплошное нагромождение дурацких законов и правил.
-Что?!
-Ой, ну не делай такие большие глаза, ты же сам знаешь, что я прав. Нет, я не спорю, таблица умножения - великая вещь, она сыграла немалую роль в становлении культуры и истории человечества. Но теперь-то это всё уже неактуально! И потом, зачем было всё усложнять? В природе не существует никаких интегралов или логарифмов, это всё выдумки математиков.
-Погоди. Математики ничего не выдумывали, они открывали новые законы взаимодействия чисел, пользуясь проверенным инструментарием...
-Ну да, конечно! И ты этому веришь? Ты что, сам не видишь, какую чушь они постоянно несут? Тебе привести пример?
-Да уж, будь добр.
-Да пожалуйста! Теорема Пифагора.
-Ну и что в ней не так?
-Да всё не так! "Пифагоровы штаны на все стороны равны", понимаете ли. А ты в курсе, что греки во времена Пифагора не носили штанов? Как Пифагор мог вообще рассуждать о том, о чём не имел никакого понятия?
-Погоди. При чём тут штаны?
-Ну они же вроде бы Пифагоровы? Или нет? Ты признаёшь, что у Пифагора не было штанов?
-Ну, вообще-то, конечно, не было...
-Ага, значит, уже в самом названии теоремы явное несоответствие! Как после этого можно относиться серьёзно к тому, что там говорится?
-Минутку. Пифагор ничего не говорил о штанах...
-Ты это признаёшь, да?
-Да... Так вот, можно я продолжу? Пифагор ничего не говорил о штанах, и не надо ему приписывать чужие глупости...
-Ага, ты сам согласен, что это всё глупости!
-Да не говорил я такого!
-Только что сказал. Ты сам себе противоречишь.
-Так. Стоп. Что говорится в теореме Пифагора?
-Что все штаны равны.
-Блин, да ты вообще читал эту теорему?!
-Я знаю.
-Откуда?
-Я читал.
-Что ты читал?!
-Лобачевского.
*пауза*
-Прости, а какое отношение имеет Лобачевский к Пифагору?
-Ну, Лобачевский же тоже математик, и он вроде бы даже более крутой авторитет, чем Пифагор, скажешь нет?
*вздох*
-Ну и что же сказал Лобачевский о теореме Пифагора?
-Что штаны равны. Но это же чушь! Как такие штаны вообще можно носить? И к тому же, Пифагор вообще не носил штанов!
-Лобачевский так сказал?!
*секундная пауза, с уверенностью*
-Да!
-Покажи мне, где это написано.
-Нет, ну там это не написано так прямо...
-Как называется книга?
-Да это не книга, это статья в газете. Про то, что Лобачевский на самом деле был агент германской разведки... ну, это к делу не относится. Всё-равно он наверняка так говорил. Он же тоже математик, значит они с Пифагором заодно.
-Пифагор ничего не говорил про штаны.
-Ну да! О том и речь. Фигня это всё.
-Давай по порядку. Откуда ты лично знаешь, о чём говорится в теореме Пифагора?
-Ой, ну брось! Это же все знают. Любого спроси, тебе сразу ответят.
-Пифагоровы штаны - это не штаны...
-А, ну конечно! Это аллегория! Знаешь, сколько раз я уже такое слышал?
-Теорема Пифагора гласит, что сумма квадратов катетов равна квадрату гипотенузы. И ВСЁ!
-А где штаны?
-Да не было у Пифагора никаких штанов!!!
-Ну вот видишь, я тебе о том и толкую. Фигня вся ваша математика.
-А вот и не фигня! Смотри сам. Вот треугольник. Вот гипотенуза. Вот катеты...
-А почему вдруг именно это катеты, а это гипотенуза? Может, наоборот?
-Нет. Катетами называются две стороны, образующие прямой угол.
-Ну вот тебе ещё один прямой угол.
-Он не прямой.
-А какой же он, кривой?
-Нет, он острый.
-Так и этот тоже острый.
-Он не острый, он прямой.
-Знаешь, не морочь мне голову! Ты просто называешь вещи как тебе удобно, лишь бы подогнать результат под желаемый.
-Две короткие стороны прямоугольного треугольника - это катеты. Длинная сторона - гипотенуза.
-А, кто короче - тот катет? И гипотенуза, значит, уже не катит? Ты сам-то послушай себя со стороны, какой ты бред несёшь. На дворе 21 век, расцвет демократии, а у тебя средневековье какое-то. Стороны у него, видишь ли, неравны...
-Прямоугольного треугольника с равными сторонами не существует...
-А ты уверен? Давай я тебе нарисую. Вот, смотри. Прямоугольный? Прямоугольный. И все стороны равны!
-Ты нарисовал квадрат.
-Ну и что?
-Квадрат - не треугольник.
-А, ну конечно! Как только он нас не устраивает, сразу "не треугольник"! Не морочь мне голову. Считай сам: один угол, два угла, три угла.
-Четыре.
-Ну и что?
-Это квадрат.
-А квадрат что, не треугольник? Он хуже, да? Только потому, что я его нарисовал? Три угла есть? Есть, и даже вот один запасной. Ну и нефиг тут, понимаешь...
-Ладно, оставим эту тему.
-Ага, уже сдаёшься? Нечего возразить? Ты признаёшь, что математика - фигня?
-Нет, не признаю.
-Ну вот, опять снова-здорово! Я же тебе только что всё подробно доказал! Если в основе всей вашей геометрии лежит учение Пифагора, а оно, извиняюсь, полная чушь... то о чём вообще можно дальше рассуждать?
-Учение Пифагора - не чушь...
-Ну как же! А то я не слышал про школу пифагорейцев! Они, если хочешь знать, предавались оргиям!
-При чём тут...
-А Пифагор вообще был педик! Он сам сказал, что Платон ему друг.
-Пифагор?!
-А ты не знал? Да они вообще все педики были. И на голову трёхнутые. Один в бочке спал, другой голышом по городу бегал...
-В бочке спал Диоген, но он был философ, а не математик...
-А, ну конечно! Если кто-то в бочку полез, то уже и не математик! Зачем нам лишний позор? Знаем, знаем, проходили. А вот ты объясни мне, почему всякие педики, которые жили три тыщи лет назад и бегали без штанов, должны быть для меня авторитетом? С какой стати я должен принимать их точку зрения?
-Ладно, оставь...
-Да нет, ты послушай! Я тебя, в конце концов, тоже слушал. Вот эти ваши вычисления, подсчёты... Считать вы все умеете! А спроси у вас что-нибудь по существу, тут же сразу: "это частное, это переменная, а это два неизвестных". А ты мне в о-о-о-общем скажи, без частностей! И без всяких там неизвестных, непознанных, экзистенциальных... Меня от этого тошнит, понимаешь?
-Понимаю.
-Ну вот объясни мне, почему дважды два всегда четыре? Кто это придумал? И почему я обязан принимать это как данность и не имею права сомневаться?
-Да сомневайся сколько хочешь...
-Нет, ты мне объясни! Только без этих ваших штучек, а нормально, по-человечески, чтобы понятно было.
-Дважды два равно четырём, потому что два раза по два будет четыре.
-Масло масляное. Что ты мне нового сказал?
-Дважды два - это два, умноженное на два. Возьми два и два и сложи их...
-Так сложить или умножить?
-Это одно и то же...
-Оба-на! Выходит, если я сложу и умножу семь и восемь, тоже получится одно и то же?
-Нет.
-А почему?
-Потому что семь плюс восемь не равняется...
-А если я девять умножу на два, получится четыре?
-Нет.
-А почему? Два умножал - получилось, а с девяткой вдруг облом?
-Да. Дважды девять - восемнадцать.
-А дважды семь?
-Четырнадцать.
-А дважды пять?
-Десять.
-То есть, четыре получается только в одном частном случае?
-Именно так.
-А теперь подумай сам. Ты говоришь, что существуют некие жёсткие законы и правила умножения. О каких законах тут вообще может идти речь, если в каждом конкретном случае получается другой результат?!
-Это не совсем так. Иногда результат может совпадать. Например, дважды шесть равняется двенадцати. И четырежды три - тоже...
-Ещё хуже! Два, шесть, три четыре - вообще ничего общего! Ты сам видишь, что результат никак не зависит от исходных данных. Принимается одно и то же решение в двух кардинально различных ситуациях! И это при том, что одна и та же двойка, которую мы берём постоянно и ни на что не меняем, со всеми числами всегда даёт разный ответ. Где, спрашивается, логика?
-Но это же, как-раз, логично!
-Для тебя - может быть. Вы, математики, всегда верите во всякую запредельную хрень. А меня эти ваши выкладки не убеждают. И знаешь почему?
-Почему?
-Потому что я знаю , зачем нужна на самом деле ваша математика. Она ведь вся к чему сводится? "У Кати в кармане одно яблоко, а у Миши пять. Сколько яблок должен отдать Миша Кате, чтобы яблок у них стало поровну?" И знаешь, что я тебе скажу? Миша никому ничего не должен отдавать! У Кати одно яблоко есть - и хватит. Мало ей? Пусть идёт вкалывать, и сама себе честно заработает хоть на яблоки, хоть на груши, хоть на ананасы в шампанском. А если кто-то хочет не работать, а только задачки решать - пусть сидит со своим одним яблоком и не выпендривается!

Пифагоровы штаны Шуточное название теоремы Пифагора, возникшее в силу того, что построенные на сторонах прямоугольника и расходящиеся в разные стороны квадраты напоминают покрой штанов. Геометрию я любил… и на вступительном экзамене в университет получил даже от Чумакова, профессора математики, похвалу за то, что без доски, чертя руками по воздуху, объяснял свойства параллельных линий и пифагоровых штанов (Н. Пирогов. Дневник старого врача).

Фразеологический словарь русского литературного языка. - М.: Астрель, АСТ . А. И. Фёдоров . 2008 .

Смотреть что такое "Пифагоровы штаны" в других словарях:

    Штаны - получить на Академике рабочий купон на скидку SuperStep или выгодно штаны купить с бесплатной доставкой на распродаже в SuperStep

    Пифагоровы штаны - … Википедия

    Пифагоровы штаны - Жарг. шк. Шутл. Теорема Пифагора, устанавливающая соотношение между площадями квадратов, построенных на гипотенузе и катетах прямоугольного треугольника. БТС, 835 … Большой словарь русских поговорок

    пифагоровы штаны - Шутливое название теоремы Пифагора, устанавливающей соотношение между площадями квадратов, построенных на гипотенузе и катетах прямоугольного треугольника, что внешне на рисунках выглядит как покрой штанов … Словарь многих выражений

    пифагоровы штаны(выдумать) - иноск.: о человеке даровитом Ср. Это несомненности мудрец. В древности он наверное выдумал бы Пифагоровы штаны... Салтыков. Пестрые письма. Пифагоровы штаны (геом.): в прямоугольнике квадрат гипотенузы равняется квадратам катетов (учение… … Большой толково-фразеологический словарь Михельсона

    Пифагоровы штаны на все стороны равны - Число пуговиц известно. Почему же хую тесно? (грубо) о штанах и мужском половом органе. Пифагоровы штаны на все стороны равны. Чтобы это доказать, надо снять и показать 1) о теореме Пифагора; 2) о широких штанах … Живая речь. Словарь разговорных выражений

    Пифагоровы штаны выдумать - Пиѳагоровы штаны (выдумать) иноск. о человѣкѣ даровитомъ. Ср. Это несомнѣнности мудрецъ. Въ древности онъ навѣрное выдумалъ бы пиѳагоровы штаны... Салтыковъ. Пестрыя письма. Пиѳагоровы штаны (геом.): въ прямоугольникѣ квадратъ гипотенузы… … Большой толково-фразеологический словарь Михельсона (оригинальная орфография)

    Пифагоровы штаны во все стороны равны - Шутливое доказательство теоремы Пифагора; также в шутку о мешковатых брюках приятеля … Словарь народной фразеологии

    Присл., груб …

    ПИФАГОРОВЫ ШТАНЫ НА ВСЕ СТОРОНЫ РАВНЫ (ЧИСЛО ПУГОВИЦ ИЗВЕСТНО. ПОЧЕМУ ЖЕ ХУЮ ТЕСНО? / ЧТОБЫ ЭТО ДОКАЗАТЬ, НАДО СНЯТЬ И ПОКАЗАТЬ) - присл., груб … Толковый словарь современных разговорных фразеологизмов и присловий

    штаны - сущ., мн., употр. сравн. часто Морфология: мн. что? штаны, (нет) чего? штанов, чему? штанам, (вижу) что? штаны, чем? штанами, о чём? о штанах 1. Штаны это предмет одежды, который имеет две короткие или длинные штанины и закрывает нижнюю часть… … Толковый словарь Дмитриева

Книги

  • Пифагоровы штаны , . В этой книге вы найдете фантастику и приключения, чудеса и выдумку. Смешное и грустное, обыкновенное и загадочное... А что ещё нужно для занимательного чтения? Главное, чтобы было…

В одном можно быть уверенным на все сто процентов, что на вопрос, чему равен квадрат гипотенузы, любой взрослый человек смело ответит: «Сумме квадратов катетов». Эта теорема прочно засела в сознании каждого образованного человека, но достаточно лишь попросить кого-либо ее доказать, и тут могут возникнуть сложности. Поэтому давайте вспомним и рассмотрим разные способы доказательства теоремы Пифагора.

Краткий обзор биографии

Теорема Пифагора знакома практически каждому, но почему-то биография человека, который произвел ее на свет, не так популярна. Это поправимо. Поэтому прежде чем изучить разные способы доказательства теоремы Пифагора, нужно кратко познакомиться с его личностью.

Пифагор - философ, математик, мыслитель родом из Сегодня очень сложно отличить его биографию от легенд, которые сложились в память об этом великом человеке. Но как следует из трудов его последователей, Пифагор Самосский родился на острове Самос. Его отец был обычный камнерез, а вот мать происходила из знатного рода.

Судя по легенде, появление на свет Пифагора предсказала женщина по имени Пифия, в чью честь и назвали мальчика. По ее предсказанию рожденный мальчик должен был принести много пользы и добра человечеству. Что вообще-то он и сделал.

Рождение теоремы

В юности Пифагор переехал с в Египет, чтобы встретиться там с известными египетскими мудрецами. После встречи с ними он был допущен к обучению, где и познал все великие достижения египетской философии, математики и медицины.

Вероятно, именно в Египте Пифагор вдохновился величеством и красотой пирамид и создал свою великую теорию. Это может шокировать читателей, но современные историки считают, что Пифагор не доказывал свою теорию. А лишь передал свое знание последователям, которые позже и завершили все необходимые математические вычисления.

Как бы там ни было, сегодня известна не одна методика доказательства данной теоремы, а сразу несколько. Сегодня остается лишь гадать, как именно древние греки производили свои вычисления, поэтому здесь рассмотрим разные способы доказательства теоремы Пифагора.

Теорема Пифагора

Прежде чем начинать какие-либо вычисления, нужно выяснить, какую теорию предстоит доказать. Теорема Пифагора звучит так: «В треугольнике, у которого один из углов равен 90 о, сумма квадратов катетов равна квадрату гипотенузы».

Всего существует 15 разных способов доказательства теоремы Пифагора. Это достаточно большая цифра, поэтому уделим внимание самым популярным из них.

Способ первый

Сначала обозначим, что нам дано. Эти данные будут распространяться и на другие способы доказательств теоремы Пифагора, поэтому стоит сразу запомнить все имеющееся обозначения.

Допустим, дан прямоугольный треугольник, с катетами а, в и гипотенузой, равной с. Первый способ доказательства основывается на том, что из прямоугольного треугольника нужно дорисовать квадрат.

Чтобы это сделать, нужно к катету длиной а дорисовать отрезок равный катету в, и наоборот. Так должно получиться две равные стороны квадрата. Остается только нарисовать две параллельные прямые, и квадрат готов.

Внутри получившейся фигуры нужно начертить еще один квадрат со стороной равной гипотенузе исходного треугольника. Для этого от вершин ас и св нужно нарисовать два параллельных отрезка равных с. Таким образом, получиться три стороны квадрата, одна из которых и есть гипотенуза исходного прямоугольного треугольники. Остается лишь дочертить четвертый отрезок.

На основании получившегося рисунка можно сделать вывод, что площадь внешнего квадрата равна (а+в) 2 . Если заглянуть внутрь фигуры, можно увидеть, что помимо внутреннего квадрата в ней имеется четыре прямоугольных треугольника. Площадь каждого равна 0,5ав.

Поэтому площадь равна: 4*0,5ав+с 2 =2ав+с 2

Отсюда (а+в) 2 =2ав+с 2

И, следовательно, с 2 =а 2 +в 2

Теорема доказана.

Способ два: подобные треугольники

Данная формула доказательства теоремы Пифагора была выведена на основании утверждения из раздела геометрии о подобных треугольниках. Оно гласит, что катет прямоугольного треугольника - среднее пропорциональное для его гипотенузы и отрезка гипотенузы, исходящего из вершины угла 90 о.

Исходные данные остаются те же, поэтому начнем сразу с доказательства. Проведем перпендикулярный стороне АВ отрезок СД. Основываясь на вышеописанном утверждении катеты треугольников равны:

АС=√АВ*АД, СВ=√АВ*ДВ.

Чтобы ответить на вопрос, как доказать теорему Пифагора, доказательство нужно проложить возведением в квадрат обоих неравенств.

АС 2 =АВ*АД и СВ 2 =АВ*ДВ

Теперь нужно сложить получившиеся неравенства.

АС 2 + СВ 2 =АВ*(АД*ДВ), где АД+ДВ=АВ

Получается, что:

АС 2 + СВ 2 =АВ*АВ

И, следовательно:

АС 2 + СВ 2 =АВ 2

Доказательство теоремы Пифагора и различные способы ее решения нуждаются в разностороннем подходе к данной задаче. Однако этот вариант является одним из простейших.

Еще одна методика расчетов

Описание разных способов доказательства теоремы Пифагора могут ни о чем не сказать, до тех самых пор пока самостоятельно не приступишь к практике. Многие методики предусматривают не только математические расчеты, но и построение из исходного треугольника новых фигур.

В данном случае необходимо от катета ВС достроить еще один прямоугольный треугольник ВСД. Таким образом, теперь имеется два треугольника с общим катетом ВС.

Зная, что площади подобных фигур имеют соотношение как квадраты их сходных линейных размеров, то:

S авс * с 2 - S авд *в 2 =S авд *а 2 - S всд *а 2

S авс *(с 2 -в 2)=а 2 *(S авд -S всд)

с 2 -в 2 =а 2

с 2 =а 2 +в 2

Поскольку из разных способов доказательств теоремы Пифагора для 8 класса этот вариант едва ли подойдет, можно воспользоваться следующей методикой.

Самый простой способ доказать теорему Пифагора. Отзывы

Как полагают историки, этот способ был впервые использован для доказательства теоремы еще в древней Греции. Он является самым простым, так как не требует абсолютно никаких расчетов. Если правильно начертить рисунок, то доказательство утверждения, что а 2 +в 2 =с 2 , будет видно наглядно.

Условия для данного способа будет немного отличаться от предыдущего. Чтобы доказать теорему, предположим, что прямоугольный треугольник АВС - равнобедренный.

Гипотенузу АС принимаем за сторону квадрата и дочерчиваем три его стороны. Кроме этого необходимо провести две диагональные прямые в получившемся квадрате. Таким образом, чтобы внутри него получилось четыре равнобедренных треугольника.

К катетам АВ и СВ так же нужно дочертить по квадрату и провести по одной диагональной прямой в каждом из них. Первую прямую чертим из вершины А, вторую - из С.

Теперь нужно внимательно всмотреться в получившийся рисунок. Поскольку на гипотенузе АС лежит четыре треугольника, равные исходному, а на катетах по два, это говорит о правдивости данной теоремы.

Кстати, благодаря данной методике доказательства теоремы Пифагора и появилась на свет знаменитая фраза: «Пифагоровы штаны во все стороны равны».

Доказательство Дж. Гарфилда

Джеймс Гарфилд - двадцатый президент Соединенных Штатов Америки. Кроме того, что он оставил свой след в истории как правитель США, он был еще и одаренным самоучкой.

В начале своей карьеры он был обычным преподавателем в народной школе, но вскоре стал директором одного из высших учебных заведений. Стремление к саморазвитию и позволило ему предложить новую теорию доказательства теоремы Пифагора. Теорема и пример ее решения выглядит следующим образом.

Сначала нужно начертить на листе бумаги два прямоугольных треугольника таким образом, чтобы катет одного из них был продолжением второго. Вершины этих треугольников нужно соединить, чтобы в конечном итоге получилась трапеция.

Как известно, площадь трапеции равна произведению полусуммы ее оснований на высоту.

S=а+в/2 * (а+в)

Если рассмотреть получившуюся трапецию, как фигуру, состоящую из трех треугольников, то ее площадь можно найти так:

S=ав/2 *2 + с 2 /2

Теперь необходимо уравнять два исходных выражения

2ав/2 + с/2=(а+в) 2 /2

с 2 =а 2 +в 2

О теореме Пифагора и способах ее доказательства можно написать не один том учебного пособия. Но есть ли в нем смысл, когда эти знания нельзя применить на практике?

Практическое применение теоремы Пифагора

К сожалению, в современных школьных программах предусмотрено использование данной теоремы только в геометрических задачах. Выпускники скоро покинут школьные стены, так и не узнав, а как они могут применить свои знания и умения на практике.

На самом же деле использовать теорему Пифагора в своей повседневной жизни может каждый. Причем не только в профессиональной деятельности, но и в обычных домашних делах. Рассмотрим несколько случаев, когда теорема Пифагора и способы ее доказательства могут оказаться крайне необходимыми.

Связь теоремы и астрономии

Казалось бы, как могут быть связаны звезды и треугольники на бумаге. На самом же деле астрономия - это научная сфера, в которой широко используется теорема Пифагора.

Например, рассмотрим движение светового луча в космосе. Известно, что свет движется в обе стороны с одинаковой скоростью. Траекторию АВ, которой движется луч света назовем l . А половину времени, которое необходимо свету, чтобы попасть из точки А в точку Б, назовем t . И скорость луча - c . Получается, что: c*t=l

Если посмотреть на этот самый луч из другой плоскости, например, из космического лайнера, который движется со скоростью v, то при таком наблюдении тел их скорость изменится. При этом даже неподвижные элементы станут двигаться со скоростью v в обратном направлении.

Допустим, комический лайнер плывет вправо. Тогда точки А и В, между которыми мечется луч, станут двигаться влево. Причем, когда луч движется от точки А в точку В, точка А успевает переместиться и, соответственно, свет уже прибудет в новую точку С. Чтобы найти половину расстояния, на которое сместилась точка А, нужно скорость лайнера умножить на половину времени путешествия луча (t").

А чтобы найти, какое расстояние за это время смог пройти луч света, нужно обозначить половину пути новой буковой s и получить следующее выражение:

Если представить, что точки света С и В, а также космический лайнер - это вершины равнобедренного треугольника, то отрезок от точки А до лайнера разделит его на два прямоугольных треугольника. Поэтому благодаря теореме Пифагора можно найти расстояние, которое смог пройти луч света.

Этот пример, конечно, не самый удачный, так как только единицам может посчастливиться опробовать его на практике. Поэтому рассмотрим более приземленные варианты применения этой теоремы.

Радиус передачи мобильного сигнала

Современную жизнь уже невозможно представить без существования смартфонов. Но много ли было бы от них прока, если бы они не могли соединять абонентов посредством мобильной связи?!

Качество мобильной связи напрямую зависит от того, на какой высоте находиться антенна мобильного оператора. Для того чтобы вычислить, каком расстоянии от мобильной вышки телефон может принимать сигнал, можно применить теорему Пифагора.

Допустим, нужно найти приблизительную высоту стационарной вышки, чтобы она могла распространять сигнал в радиусе 200 километров.

АВ (высота вышки) = х;

ВС (радиус передачи сигнала) = 200 км;

ОС (радиус земного шара) = 6380 км;

ОВ=ОА+АВОВ=r+х

Применив теорему Пифагора, выясним, что минимальная высота вышки должна составить 2,3 километра.

Теорема Пифагора в быту

Как ни странно, теорема Пифагора может оказаться полезной даже в бытовых делах, таких как определение высоты шкафа-купе, например. На первый взгляд, нет необходимости использовать такие сложные вычисления, ведь можно просто снять мерки с помощью рулетки. Но многие удивляются, почему в процессе сборки возникают определенные проблемы, если все мерки были сняты более чем точно.

Дело в том, что шкаф-купе собирается в горизонтальном положении и только потом поднимается и устанавливается к стене. Поэтому боковина шкафа в процессе подъема конструкции должна свободно проходить и по высоте, и по диагонали помещения.

Предположим, имеется шкаф-купе глубиной 800 мм. Расстояние от пола до потолка - 2600 мм. Опытный мебельщик скажет, что высота шкафа должна быть на 126 мм меньше, чем высота помещения. Но почему именно на 126 мм? Рассмотрим на примере.

При идеальных габаритах шкафа проверим действие теоремы Пифагора:

АС=√АВ 2 +√ВС 2

АС=√2474 2 +800 2 =2600 мм - все сходится.

Допустим, высота шкафа равна не 2474 мм, а 2505 мм. Тогда:

АС=√2505 2 +√800 2 =2629 мм.

Следовательно, этот шкаф не подойдет для установки в данном помещении. Так как при поднятии его в вертикальное положение можно нанести ущерб его корпусу.

Пожалуй, рассмотрев разные способы доказательства теоремы Пифагора разными учеными, можно сделать вывод, что она более чем правдива. Теперь можно использовать полученную информацию в своей повседневной жизни и быть полностью уверенным, что все расчеты будут не только полезны, но и верны.

» заслуженного профессора математики Уорикского университета, известного популяризатора науки Иэна Стюарта, посвященной роли чисел в истории человечества и актуальности их изучения в наше время.

Пифагорова гипотенуза

Пифагоровы треугольники имеют прямой угол и целочисленные стороны. У простейшего из них самая длинная сторона имеет длину 5, остальные - 3 и 4. Всего существует 5 правильных многогранников. Уравнение пятой степени невозможно решить при помощи корней пятой степени - или любых других корней. Решетки на плоскости и в трехмерном пространстве не имеют пятилепестковой симметрии вращения, поэтому такие симметрии отсутствуют и в кристаллах. Однако они могут быть у решеток в четырехмерном пространстве и в занятных структурах, известных как квазикристаллы.

Гипотенуза самой маленькой пифагоровой тройки

Теорема Пифагора гласит, что самая длинная сторона прямоугольного треугольника (пресловутая гипотенуза) соотносится с двумя другими сторонами этого треугольника очень просто и красиво: квадрат гипотенузы равен сумме квадратов двух других сторон.

Традиционно мы называем эту теорему именем Пифагора, но на самом деле история ее достаточно туманна. Глиняные таблички позволяют предположить, что древние вавилоняне знали теорему Пифагора задолго до самого Пифагора; славу первооткрывателя принес ему математический культ пифагорейцев, сторонники которого верили, что Вселенная основана на числовых закономерностях. Древние авторы приписывали пифагорейцам - а значит, и Пифагору - самые разные математические теоремы, но на самом деле мы представления не имеем о том, какой математикой занимался сам Пифагор. Мы даже не знаем, могли ли пифагорейцы доказать теорему Пифагора или просто верили в то, что она верна. Или, что наиболее вероятно, у них были убедительные данные о ее истинности, которых тем не менее не хватило бы на то, что мы считаем доказательством сегодня.

Доказательства Пифагора

Первое известное доказательство теоремы Пифагора мы находим в «Началах» Евклида. Это достаточно сложное доказательство с использованием чертежа, в котором викторианские школьники сразу узнали бы «пифагоровы штаны»; чертеж и правда напоминает сохнущие на веревке подштанники. Известны буквально сотни других доказательств, большинство из которых делает доказываемое утверждение более очевидным.


// Рис. 33. Пифагоровы штаны

Одно из простейших доказательств - это своего рода математический пазл. Возьмите любой прямоугольный треугольник, сделайте четыре его копии и соберите их внутри квадрата. При одной укладке мы видим квадрат на гипотенузе; при другой - квадраты на двух других сторонах треугольника. При этом ясно, что площади в том и другом случае равны.


// Рис. 34. Слева: квадрат на гипотенузе (плюс четыре треугольника). Справа: сумма квадратов на двух других сторонах (плюс те же четыре треугольника). А теперь исключите треугольники

Рассечение Перигаля - еще одно доказательство-пазл.


// Рис. 35. Рассечение Перигаля

Существует также доказательство теоремы с использованием укладки квадратов на плоскости. Возможно, именно так пифагорейцы или их неизвестные предшественники открыли эту теорему. Если взглянуть на то, как косой квадрат перекрывает два других квадрата, то можно увидеть, как разрезать большой квадрат на куски, а затем сложить из них два меньших квадрата. Можно увидеть также прямоугольные треугольники, стороны которых дают размеры трех задействованных квадратов.


// Рис. 36. Доказательство мощением

Есть интересные доказательства с использованием подобных треугольников в тригонометрии. Известно по крайней мере пятьдесят различных доказательств.

Пифагоровы тройки

В теории чисел теорема Пифагора стала источником плодотворной идеи: найти целочисленные решения алгебраических уравнений. Пифагорова тройка - это набор целых чисел a, b и c, таких что

Геометрически такая тройка определяет прямоугольный треугольник с целочисленными сторонами.

Самая маленькая гипотенуза пифагоровой тройки равна 5.

Другие две стороны этого треугольника равны 3 и 4. Здесь

32 + 42 = 9 + 16 = 25 = 52.

Следующая по величине гипотенуза равна 10, потому что

62 + 82 = 36 + 64 = 100 = 102.

Однако это, по существу, тот же треугольник с удвоенными сторонами. Следующая по величине и по-настоящему другая гипотенуза равна 13, для нее

52 + 122 = 25 + 144 = 169 = 132.

Евклид знал, что существует бесконечное число различных вариантов пифагоровых троек, и дал то, что можно назвать формулой для нахождения их всех. Позже Диофант Александрийский предложил простой рецепт, в основном совпадающий с евклидовым.

Возьмите любые два натуральных числа и вычислите:

их удвоенное произведение;

разность их квадратов;

сумму их квадратов.

Три получившихся числа будут сторонами пифагорова треугольника.

Возьмем, к примеру, числа 2 и 1. Вычислим:

удвоенное произведение: 2 × 2 × 1 = 4;

разность квадратов: 22 - 12 = 3;

сумма квадратов: 22 + 12 = 5,

и мы получили знаменитый треугольник 3–4–5. Если взять вместо этого числа 3 и 2, получим:

удвоенное произведение: 2 × 3 × 2 = 12;

разность квадратов: 32 - 22 = 5;

сумму квадратов: 32 + 22 = 13,

и получаем следующий по известности треугольник 5 - 12 - 13. Попробуем взять числа 42 и 23 и получим:

удвоенное произведение: 2 × 42 × 23 = 1932;

разность квадратов: 422 - 232 = 1235;

сумма квадратов: 422 + 232 = 2293,

никто никогда не слышал о треугольнике 1235–1932–2293.

Но эти числа тоже работают:

12352 + 19322 = 1525225 + 3732624 = 5257849 = 22932.

В диофантовом правиле есть еще одна особенность, на которую уже намекали: получив три числа, мы можем взять еще одно произвольное число и все их на него умножить. Таким образом треугольник 3–4–5 можно превратить в треугольник 6–8–10, умножив все стороны на 2, или в треугольник 15–20–25, умножив все на 5.

Если перейти на язык алгебры, правило приобретает следующий вид: пусть u, v и k - натуральные числа. Тогда прямоугольный треугольник со сторонами

2kuv и k (u2 - v2) имеет гипотенузу

Существуют и другие способы изложения основной идеи, но все они сводятся к описанному выше. Этот метод позволяет получить все пифагоровы тройки.

Правильные многогранники

Существует ровным счетом пять правильных многогранников. Правильный многогранник (или полиэдр) - это объемная фигура с конечным числом плоских граней. Грани сходятся друг с другом на линиях, именуемых ребрами; ребра встречаются в точках, именуемых вершинами.

Кульминацией евклидовых «Начал» является доказательство того, что может быть только пять правильных многогранников, то есть многогранников, у которых каждая грань представляет собой правильный многоугольник (равные стороны, равные углы), все грани идентичны и все вершины окружены равным числом одинаково расположенных граней. Вот пять правильных многогранников:

тетраэдр с четырьмя треугольными гранями, четырьмя вершинами и шестью ребрами;

куб, или гексаэдр, с 6 квадратными гранями, 8 вершинами и 12 ребрами;

октаэдр с 8 треугольными гранями, 6 вершинами и 12 ребрами;

додекаэдр с 12 пятиугольными гранями, 20 вершинами и 30 ребрами;

икосаэдр с 20 треугольными гранями, 12 вершинами и 30 ребрами.


// Рис. 37. Пять правильных многогранников

Правильные многогранники можно найти и в природе. В 1904 г. Эрнст Геккель опубликовал рисунки крохотных организмов, известных как радиолярии; многие из них по форме напоминают те самые пять правильных многогранников. Возможно, правда, он немного подправил природу, и рисунки не отражают полностью форму конкретных живых существ. Первые три структуры наблюдаются также в кристаллах. Додекаэдра и икосаэдра в кристаллах вы не найдете, хотя неправильные додекаэдры и икосаэдры там иногда попадаются. Настоящие додекаэдры могут возникать в виде квазикристаллов, которые во всем похожи на кристаллы, за исключением того, что их атомы не образуют периодической решетки.


// Рис. 38. Рисунки Геккеля: радиолярии в форме правильных многогранников


// Рис. 39. Развертки правильных многогранников

Бывает интересно делать модели правильных многогранников из бумаги, вырезав предварительно набор соединенных между собой граней - это называется разверткой многогранника; развертку складывают по ребрам и склеивают соответствующие ребра между собой. Полезно добавить к одному из ребер каждой такой пары дополнительную площадку для клея, как показано на рис. 39. Если такой площадки нет, можно использовать липкую ленту.

Уравнение пятой степени

Не существует алгебраической формулы для решения уравнений 5-й степени.

В общем виде уравнение пятой степени выглядит так:

ax5 + bx4 + cx3 + dx2 + ex + f = 0.

Проблема в том, чтобы найти формулу для решений такого уравнения (у него может быть до пяти решений). Опыт обращения с квадратными и кубическими уравнениями, а также с уравнениями четвертой степени позволяет предположить, что такая формула должна существовать и для уравнений пятой степени, причем в ней, по идее, должны фигурировать корни пятой, третьей и второй степени. Опять же, можно смело предположить, что такая формула, если она существует, окажется очень и очень сложной.

Это предположение в конечном итоге оказалось ошибочным. В самом деле, никакой такой формулы не существует; по крайней мере не существует формулы, состоящей из коэффициентов a, b, c, d, e и f, составленной с использованием сложения, вычитания, умножения и деления, а также извлечения корней. Таким образом, в числе 5 есть что-то совершенно особенное. Причины такого необычного поведения пятерки весьма глубоки, и потребовалось немало времени, чтобы в них разобраться.

Первым признаком проблемы стало то, что, как бы математики ни старались отыскать такую формулу, какими бы умными они ни были, они неизменно терпели неудачу. Некоторое время все считали, что причины кроются в неимоверной сложности формулы. Считалось, что никто просто не может как следует разобраться в этой алгебре. Однако со временем некоторые математики начали сомневаться в том, что такая формула вообще существует, а в 1823 г. Нильс Хендрик Абель сумел доказать обратное. Такой формулы не существует. Вскоре после этого Эварист Галуа нашел способ определить, решаемо ли уравнение той или иной степени - 5-й, 6-й, 7-й, вообще любой - с использованием такого рода формулы.

Вывод из всего этого прост: число 5 особенное. Можно решать алгебраические уравнения (при помощи корней n-й степени для различных значений n) для степеней 1, 2, 3 и 4, но не для 5-й степени. Здесь очевидная закономерность заканчивается.

Никого не удивляет, что уравнения степеней больше 5 ведут себя еще хуже; в частности, с ними связана такая же трудность: нет общих формул для их решения. Это не означает, что уравнения не имеют решений; это не означает также, что невозможно найти очень точные численные значения этих решений. Все дело в ограниченности традиционных инструментов алгебры. Это напоминает невозможность трисекции угла при помощи линейки и циркуля. Ответ существует, но перечисленные методы недостаточны и не позволяют определить, каков он.

Кристаллографическое ограничение

Кристаллы в двух и трех измерениях не имеют 5-лучевой симметрии вращения.

Атомы в кристалле образуют решетку, то есть структуру, которая периодически повторяется в нескольких независимых направлениях. К примеру, рисунок на обоях повторяется по длине рулона; кроме того, он обычно повторяется и в горизонтальном направлении, иногда со сдвигом от одного куска обоев к следующему. По существу, обои - это двумерный кристалл.

Существует 17 разновидностей обойных рисунков на плоскости (см. главу 17). Они различаются по типам симметрии, то есть по способам сдвинуть жестко рисунок таким образом, чтобы он точно лег сам на себя в первоначальном положении. К типам симметрии относятся, в частности, различные варианты симметрии вращения, где рисунок следует повернуть на определенный угол вокруг определенной точки - центра симметрии.

Порядок симметрии вращения - это то, сколько раз можно повернуть тело до полного круга так, чтобы все детали рисунка вернулись на первоначальные позиции. К примеру, поворот на 90° - это симметрия вращения 4-го порядка*. Список возможных типов симметрии вращения в кристаллической решетке вновь указывает на необычность числа 5: его там нет. Существуют варианты с симметрией вращения 2, 3, 4 и 6-го порядков, но ни один обойный рисунок не имеет симметрии вращения 5-го порядка. Симметрии вращения порядка больше 6 в кристаллах тоже не бывает, но первое нарушение последовательности происходит все же на числе 5.

То же происходит с кристаллографическими системами в трехмерном пространстве. Здесь решетка повторяет себя по трем независимым направлениям. Существует 219 различных типов симметрии, или 230, если считать зеркальное отражение рисунка отдельным его вариантом - притом, что в данном случае нет зеркальной симметрии. Опять же, наблюдаются симметрии вращения порядков 2, 3, 4 и 6, но не 5. Этот факт получил название кристаллографического ограничения.

В четырехмерном пространстве решетки с симметрией 5-го порядка существуют; вообще, для решеток достаточно высокой размерности возможен любой наперед заданный порядок симметрии вращения.


// Рис. 40. Кристаллическая решетка поваренной соли. Темные шарики изображают атомы натрия, светлые - атомы хлора

Квазикристаллы

Хотя симметрия вращения 5-го порядка в двумерных и трехмерных решетках невозможна, она может существовать в чуть менее регулярных структурах, известных как квазикристаллы. Воспользовавшись набросками Кеплера, Роджер Пенроуз открыл плоские системы с более общим типом пятикратной симметрии. Они получили название квазикристаллов.

Квазикристаллы существуют в природе. В 1984 г. Даниэль Шехтман открыл, что сплав алюминия и марганца может образовывать квазикристаллы; первоначально кристаллографы встретили его сообщение с некоторым скепсисом, но позже открытие было подтверждено, и в 2011 г. Шехтман был удостоен Нобелевской премии по химии. В 2009 г. команда ученых под руководством Луки Бинди обнаружила квазикристаллы в минерале с российского Корякского нагорья - соединении алюминия, меди и железа. Сегодня этот минерал называется икосаэдрит. Измерив при помощи масс-спектрометра содержание в минерале разных изотопов кислорода, ученые показали, что этот минерал возник не на Земле. Он сформировался около 4,5 млрд лет назад, в то время, когда Солнечная система только зарождалась, и провел большую часть времени в поясе астероидов, обращаясь вокруг Солнца, пока какое-то возмущение не изменило его орбиту и не привело его в конце концов на Землю.


// Рис. 41. Слева: одна из двух квазикристаллических решеток с точной пятикратной симметрией. Справа: атомная модель икосаэдрического алюминиево-палладиево-марганцевого квазикристалла